Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 508 Accesses

Abstract

The periodic arrangement of atoms known to physicists as the solid state has long been the playground of condensed matter physicists, materials scientists, electrical engineers, and the various other experts involved in the fields of nanoscience and nanotechnology. In the atomically thin limit, that is, a single sheet of atoms arranged in a crystalline lattice, the physics that govern particle and quasiparticle behavior are compressed from the three spatial dimensions we live in down to two. In this state, many new and interesting phenomena emerge as a result of the reduced dimensionality, and it is the physics of such two-dimensional materials that concerns this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section, units are selected such that ħ = 1.

  2. 2.

    Conceding that one of these layers is technically not the thickness of a single atom, one could more precisely call this a crystalline monolayer or a van der Waals monolayer, although the distinction is typically irrelevant for situations in which the electronic behavior is still governed by 2D physics. Hence, for the purposes of this thesis, the term monolayer will be used to refer to a single crystalline monolayer, with three atomic planes in cases dealing with transition metal dichalcogenide materials.

  3. 3.

    Trigonal prismatic coordination of the chalcogens is found in the 2H polytype of TMD crystals; others are also possible but will not feature in the thesis.

References

  1. S.C. de la Barrera, Q. Gao, R.M. Feenstra, Theory of graphene–insulator–graphene tunnel junctions. J. Vac. Sci. Technol. 32 (4), 04E101 (2014). https://doi.org/10.1116/1.4871760

  2. T. Roy, L. Liu, S. de la Barrera, B. Chakrabarti, Z.R. Hesabi, C.A. Joiner, R.M. Feenstra, G. Gu, E.M. Vogel, Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions. Appl. Phys. Lett. 104 (12), 123506 (2014). https://doi.org/10.1063/1.4870073

  3. S.C. de la Barrera, R.M. Feenstra, Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures. Appl. Phys. Lett. 106 (9), 093115 (2015). https://doi.org/10.1063/1.4914324

  4. D.P. Gopalan, P.C. Mende, S.C. de la Barrera, S. Dhingra, J. Li, K. Zhang, N.A. Simonson, J.A. Robinson, N. Lu, Q. Wang, M.J. Kim, B. D’Urso, R.M. Feenstra, Formation of hexagonal boron nitride on graphene-covered copper surfaces. J. Mater. Res. 31, 945–958 (2016). https://doi.org/10.1557/jmr.2016.82

    Article  ADS  Google Scholar 

  5. Y.-C. Lin, J. Li, S.C. de la Barrera, S.M. Eichfeld, Y. Nie, R. Addou, P.C. Mende, R.M. Wallace, K. Cho, R.M. Feenstra, J.A. Robinson, Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Nanoscale 8, 8947–8954 (2016). https://doi.org/10.1039/C6NR01902A

    Article  ADS  Google Scholar 

  6. S.C. de la Barrera, Y.-C. Lin, S.M. Eichfeld, J.A. Robinson, Q. Gao, M. Widom, R.M. Feenstra, Thickness characterization of atomically thin WSe2 on epitaxial graphene by low-energy electron reflectivity oscillations. J. Vac. Sci. Technol. B 34 (4), 04J106 (2016). https://doi.org/10.1116/1.4954642

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306 (5696), 666–669 (2004) https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  8. R. Peierls, Quelques propriétés typiques des corps solides. Ann. Inst. Henri Poincaré 5 (3), 177–222 (1935).

    MathSciNet  MATH  Google Scholar 

  9. L.D. Landau, Zur theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26–35 (1937)

    MATH  Google Scholar 

  10. N.D. Mermin, Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968). https://doi.org/10.1103/PhysRev.176.250

    Article  ADS  Google Scholar 

  11. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108 (52), 19912–19916 (2004). https://doi.org/10.1021/jp040650f

    Article  Google Scholar 

  12. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102 (30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  ADS  Google Scholar 

  13. D. Pacilé, J.C. Meyer, Ç.Ö. Girit, A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92 (13), 133107 (2008). https://doi.org/10.1063/1.2903702

  14. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Article  ADS  Google Scholar 

  15. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5 (10), 722–726 (2010). https://doi.org/10.1038/nnano.2010.172

    Article  ADS  Google Scholar 

  16. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7 (11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  17. R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960). Lecture given to the American Physical Society at the California Institute of Technology on 29 December 1959

    Google Scholar 

  18. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947). https://doi.org/10.1103/PhysRev.71.622

    Article  ADS  MATH  Google Scholar 

  19. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  20. G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984). https://doi.org/10.1103/PhysRevLett.53.2449

    Article  ADS  Google Scholar 

  21. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3 (6), 404–409 (2004). https://doi.org/10.1038/nmat1134

    Article  ADS  Google Scholar 

  22. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10 (4), 282–285 (2011). https://doi.org/10.1038/nmat2968

    Article  ADS  Google Scholar 

  23. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342 (6158), 614–617 (2013). https://doi.org/10.1126/science.1244358

    Article  ADS  Google Scholar 

  24. L. Esaki, New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109, 603–604 (1958). https://doi.org/10.1103/PhysRev.109.603

    Article  ADS  Google Scholar 

  25. A. Seabaugh, R. Lake, Tunnel diodes, in Encyclopedia of Applied Physics, vol. 22, ed. by G.L. Trigg (Wiley-VCH, New York, 1998), pp. 335–359

    Google Scholar 

  26. J.A. Simmons, M.A. Blount, J.S. Moon, S.K. Lyo, W.E. Baca, J.R. Wendt, J.L. Reno, M.J. Hafich, Planar quantum transistor based on 2D–2D tunneling in double quantum well heterostructures. J. Appl. Phys. 84 (10), 5626–5634 (1998). https://doi.org/10.1063/1.368610

    Article  ADS  Google Scholar 

  27. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Field-induced resonant tunneling between parallel two-dimensional electron systems. Appl. Phys. Lett. 58 (14), 1497–1499 (1991). https://doi.org/10.1063/1.105157

    Article  ADS  Google Scholar 

  28. J.P. Eisenstein, T.J. Gramila, L.N. Pfeiffer, K.W. West, Probing a two-dimensional Fermi surface by tunneling. Phys. Rev. B 44, 6511–6514 (1991). https://doi.org/10.1103/PhysRevB.44.6511

    Article  ADS  Google Scholar 

  29. S.K. Banerjee, L.F. Register, E. Tutuc, D. Reddy, A.H. MacDonald, Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. IEEE Elec. Dev. Lett. 30 (2), 158–160 (2009). https://doi.org/10.1109/LED.2008.2009362

    Article  ADS  Google Scholar 

  30. D. Basu, L.F. Register, D. Reddy, A.H. MacDonald, S.K. Banerjee, Tight-binding study of electron-hole pair condensation in graphene bilayers: gate control and system-parameter dependence. Phys. Rev. B 82, 075409 (2010). https://doi.org/10.1103/PhysRevB.82.075409

    Article  ADS  Google Scholar 

  31. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013). https://doi.org/10.1038/ncomms2817

    Article  ADS  Google Scholar 

  32. A. Mishchenko, J.S. Tu, Y. Cao, R.V. Gorbachev, J.R. Wallbank, M.T. Greenaway, V.E. Morozov, S.V. Morozov, M.J. Zhu, S.L. Wong, F. Withers, C.R. Woods, Y-J. Kim, K. Watanabe, T. Taniguchi, E.E. Vdovin, O. Makarovsky, T.M. Fromhold, V.I. Fal’ko, A.K. Geim, L. Eaves, K.S. Novoselov, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotech. 9 (10), 808–813 (2014). https://doi.org/10.1038/nnano.2014.187

    Article  ADS  Google Scholar 

  33. B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet, K. Kim, H.C.P. Movva, T. Taniguchi, K. Watanabe, L.F. Register, S.K. Banerjee, E. Tutuc, Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15 (1), 428–433 (2015). https://doi.org/10.1021/nl503756y

    Article  ADS  Google Scholar 

  34. S. Kang, B. Fallahazad, K. Lee, H. Movva, K. Kim, C.M. Corbet, T. Taniguchi, K. Watanabe, L. Colombo, L.F. Register, E. Tutuc, S.K. Banerjee, Bilayer graphene–hexagonal boron nitride heterostructure negative differential resistance interlayer tunnel FET. IEEE Elec. Dev. Lett. 36 (4), 405–407 (2015). https://doi.org/10.1109/LED.2015.2398737

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de la Barrera, S.C. (2017). Introduction. In: Layered Two-Dimensional Heterostructures and Their Tunneling Characteristics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69257-9_1

Download citation

Publish with us

Policies and ethics