Skip to main content

The Energy–Landscape Integrated Analysis (ELIA) of Agroecosystems

  • Chapter
  • First Online:

Part of the book series: Human-Environment Interactions ((HUEN,volume 7))

Abstract

Over the last century, we have seen an unprecedented growth in both global food production and associated socio-environmental conflicts, connected to increasingly industrialized farm systems and a decline in biodiversity. The objective of this chapter is to bring together an integrated methodology, applicable to different spatial scales (from regional to local), to deal with the long-term socio-metabolic balances and changes in the ecological functionality of farm systems. We propose an Intermediate Disturbance-Complexity model of agroecosystems to assess how different levels of human appropriation of photosynthetic production affect the functional landscape structure that hosts biodiversity on a regional scale . We have developed an Energy-Landscape Integrated Analysis that allows us to measure both the energy storage represented by the complexity of internal energy loops, and the energy information held in the whole network of socio-metabolic energy flows , in order to correlate both with the energy imprint in the landscape patterns and processes that sustain biodiversity on a local scale . Further research could help to reveal how and why different management strategies of agroecosystems lead to key turning-points in the relationship between energy flows, landscape functioning and biodiversity. There is no doubt that this research will be very useful in the future to help design more worldwide sustainable food systems.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Fischer and Lindenmayer (2006) argued that land matrix and landscape heterogeneity are fundamentally important, and deserve equal attention as habitat or protection patches, especially in human modified landscapes.

References

  • Agnoletti, M. (2014). Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (Southern) European perspective. Landscape Urban Plan, 126, 66–73.

    Article  Google Scholar 

  • Altieri, M. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31.

    Article  Google Scholar 

  • Barnes, B., Sidhu, H. S., & Roxburgh, S. H. (2006). A model integrating patch dynamics, competing species and the intermediate disturbance hypothesis. Ecological Modelling, 194, 414–420.

    Article  Google Scholar 

  • Barthel, S., Crumley, C., & Svedin, U. (2013). Bio-cultural refugia—Safeguarding diversity of practices for food security and biodiversity. Global Environmental Change, 23(5), 1142–1152.

    Article  Google Scholar 

  • Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18, 182–188.

    Article  Google Scholar 

  • Calow, P. (1987). Evolutionary physiological ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Chesson, P., & Huntly, N. (1997). The roles of disturbance, mortality, and stress in the dynamics of ecological communities. American Naturalist, 150, 519–553.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, J., Brosi, B., Daily, G. C., et al. (2008). Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment, 6(7), 380–385.

    Article  Google Scholar 

  • Fischer, J., & Lindenmayer, D. B. (2006). Beyond fragmentation: The continuum model for fauna research and conservation in human-modified landscapes. Oikos, 112(2), 473–480.

    Article  Google Scholar 

  • Gabriel, D., Sait, S. M., Kunin, W. E., et al. (2013). Food production versus biodiversity: Comparing organic and conventional agriculture. Journal of Applied Ecology, 50, 355–364.

    Article  Google Scholar 

  • Gershenson, C., & Fernández, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis on multiple scales. Complexity, 18(2), 29–44.

    Article  Google Scholar 

  • Giampietro, M., Mayumi, K., & Sorman, A. H. (2013). Energy analysis for sustainable future: Multi-scale integrated analysis of societal and ecosystem metabolism. Oxon: Routledge.

    Google Scholar 

  • Gladyshev, G. P. (1999). On thermodynamics, entropy and evolution of biological systems: What is life from a physical chemist’s viewpoint. Entropy, 1, 9–20.

    Article  CAS  Google Scholar 

  • Gliessman, S. R. (Ed.). (1990). Agroecology: Researching the ecological basis for sustainable agriculture. New York: Springer.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., et al. (2010). Food security: The challenge of feeding 9 Billion people. Science, 327, 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Guzmán, G. I., & González de Molina, M. (2009). Preindustrial agriculture versus organic agriculture: The land cost of sustainability. Land Use Policy, 26(2), 502–510.

    Article  Google Scholar 

  • Guzmán, G. I., & González de Molina, M. (2015). Energy efficiency in agrarian systems from an agro-ecological perspective. Agroecology and Sustainable Food Systems, 39, 924–952.

    Article  Google Scholar 

  • Haberl, H. (2001). The energetic metabolism of societies. Part I: Accounting concepts. Journal of Industrial Ecology, 5, 107–136.

    Article  Google Scholar 

  • Haberl, H., Erb, K. H., Krausmann, F., et al. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 12942–12947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberl, H., Erb, K.-H., & Krausmann, F. (2014). Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, 39, 363–391.

    Article  Google Scholar 

  • Harper, K. A., MacDonald, S. E., Burton, P. J., et al. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768–782.

    Article  Google Scholar 

  • Ho, M.-W. (2013). Circular thermodynamics of organisms and sustainable systems. Systems, 1(3), 30–49.

    Article  Google Scholar 

  • Ho, M.-W., & Ulanowicz, R. (2005). Sustainable systems as organisms? BioSystems, 82(1), 39–51.

    Article  PubMed  Google Scholar 

  • Jackson, L. E., Pulleman, M. M., Brussaard, L., et al. (2012). Social-ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Global Environmental Change, 22(3), 623–639.

    Article  Google Scholar 

  • Krausmann, F. (2004). Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Hum Ecol, 32(6), 735–772.

    Article  Google Scholar 

  • Lindenmayer, D. B., & Fischer, J. (2007). Tackling the habitat fragmentation panchreston. TREE, 22, 127–132.

    PubMed  Google Scholar 

  • Liu, L., Dietz, T., Carpenter, S. R., et al. (2007). Complexity of coupled human and natural systems. Science, 317(5844), 1513–1516.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M., Mouquet, N., & Gonzalez, A. (2010). Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences, 100(22), 12765–12770.

    Article  Google Scholar 

  • Marull, J., & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: Application to the Barcelona Metropolitan Area. Landscape Urban Plan, 71, 243–262.

    Article  Google Scholar 

  • Marull, J., Pino, J., Tello, E., et al. (2010). Social metabolism, landscape change and land use planning in the Barcelona Metropolitan region. Land Use Policy, 27(2), 497–510.

    Article  Google Scholar 

  • Marull, J., Tello, E., Fullana, N., et al. (2015). Long-term bio-cultural heritage: Exploring the intermediate disturbance hypothesis in agro-ecological landscapes (Mallorca, C. 1850–2012). Biodiversity and Conservation, 24(13), 3217–3251.

    Article  Google Scholar 

  • Marull, J., Font, C., Tello, E., et al. (2016a). Towards an energy-landscape integrated analysis? Exploring the links between socio-metabolic disturbance and landscape ecology performance (Mallorca, Spain, 1956–2011). Landscape Ecology, 31, 317–336.

    Google Scholar 

  • Marull, J., Font, C., Padró, R. et al. (2016b). Energy-landscape integrated analysis: A proposal for measuring complexity in internal agroecosystem processes (Barcelona Metropolitan Region, 1860–2000). Ecological Indicators, 66, 30–46.

    Google Scholar 

  • Marull, J., Delgadillo, O., La Rota, M. J., et al. (2017). Socioecological transition in the Cauca river valley, Colombia (1943–2010): Towards an energy–landscape integrated analysis. Regional Environmental Change (in press).

    Google Scholar 

  • Matthews, R., Selman, P. (2006). Landscape as a focus for integrating human and environmental processes. Journal of Agricultural Economics, 57, 199–212.

    Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., et al. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A., Schaffartzik, A., Haas, W. et al. (2015). Patterns of global biomass trade and the implications for food sovereignty and socio-environmental conflict. EJOLT Report No. 20, p. 106.

    Google Scholar 

  • McMichael, Ph. (2011). Food system sustainability: Questions of environmental governance in the new world (dis)order. Global Environmental Change, 21(3), 804–812.

    Article  Google Scholar 

  • Morowitz, H. J. (2002). The emergence of everything: How the world became complex. Oxford: Oxford University Press.

    Google Scholar 

  • Odum, E. P. (1993). Ecology and our endangered life-support systems. Massachusetts: Sinauer Associates.

    Google Scholar 

  • Parrotta, J. A., & Trosper, R. L. (2012). Traditional forest-related knowledge: Sustaining communities, ecosystems and biocultural diversity. World Forests, 12, 1–621.

    Article  Google Scholar 

  • Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences, 107(13), 5786–5791.

    Article  CAS  Google Scholar 

  • Peterseil, J., Wrbka, T., Plutzar, C., et al. (2004). Evaluating the ecological sustainability of Austrian agricultural landscapes—The SINUS approach. Land Use Policy, 21(3), 307–320.

    Article  Google Scholar 

  • Phalan, B., Onial, M., Balmford, A., et al. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333, 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, S. (2014). Implications for biodiversity conservation of the lack of consensus regarding the humped-back model of species richness and biomass production. Functional Ecology, 28, 253–257.

    Article  Google Scholar 

  • Pino, J., & Marull, J. (2012). Ecological networks: Are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29, 684–690.

    Article  Google Scholar 

  • Prigogine, I. (1996). The end of certainty. Time, chaos and the new laws of nature. New York: The Free Press.

    Google Scholar 

  • Schaffartzik, A., Mayer, A., Gingrich, S., et al. (2014). The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Global Environmental Change, 26, 87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrödinger, E. (1944). What is life?. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shreeve, T. G., Dennis, R. L. H., & Van Dick, H. (2004). Resources, habitats and metapopulations—Whither reality? Oikos, 106, 404–408.

    Article  Google Scholar 

  • Swift, M. J., Izac, A. M. N., & van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agriculture, Ecosystems & Environment, 104(1), 113–134.

    Article  Google Scholar 

  • Tainter, J. (1990). The collapse of complex societies. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tello, E., Galán, E., Sacristán, V., et al. (2016). Opening the black box of energy throughputs in agroecosystems: A decomposition analysis of final EROI into its internal and external returns (The Vallès County, Catalonia, c. 1860 and 1999). Ecological Economics, 121, 160–174.

    Article  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., et al. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., et al. (2005). Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters, 8, 857–874.

    Article  Google Scholar 

  • Tscharntke, T., Clough, Y., Wanger, T. C., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59.

    Article  Google Scholar 

  • Ulanowicz, R. E. (2001). Information theory in ecology. Computers & Chemistry, 25, 393–399.

    Article  CAS  Google Scholar 

  • Ulanowicz, R. E. (2003). Some steps toward a central theory of ecosystem dynamics. Computational Biology and Chemistry, 27(6), 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Van der Maarel, E. (1993). Some remarks on disturbance and its relations to diversity and stability. Journal of Vegetation Science, 4, 733–736.

    Article  Google Scholar 

  • Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., et al. (1986). Human appropriation of the products of photosynthesis. BioScience, 36(6), 363–373.

    Article  Google Scholar 

  • Vranken, I., Baudry, J., Aubinet, M., et al. (2015). A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology, 30, 51–65.

    Article  Google Scholar 

  • Wilson, J. B. (1990). Mechanisms of species coexistence: Twelve explanations for Hutchinson’s ‘paradox of the plankton’: Evidence from New Zealand plant communities. New Zealand Journal of Ecology, 13, 17–42.

    Google Scholar 

  • Wilson, J. B. (1994). The ‘intermediate disturbance hypothesis’ of species coexistence is based in on patch dynamics. New Zealand Journal of Ecology, 18, 176–181.

    Google Scholar 

  • Wrbka, T., Erb, K.-H., Schulz, N. B., et al. (2004). Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy, 21(3), 289–306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Marull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marull, J., Font, C. (2017). The Energy–Landscape Integrated Analysis (ELIA) of Agroecosystems. In: Fraňková, E., Haas, W., Singh, S. (eds) Socio-Metabolic Perspectives on the Sustainability of Local Food Systems. Human-Environment Interactions, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69236-4_4

Download citation

Publish with us

Policies and ethics