Advertisement

Methodological Challenges and General Criteria for Assessing and Designing Local Sustainable Agri-Food Systems: A Socio-Ecological Approach at Landscape Level

Chapter
Part of the Human-Environment Interactions book series (HUEN, volume 7)

Abstract

Agri-food systems are sustainable when they can meet human needs while maintaining the basic funds and ecosystem services of agoecosystems and cultural landscapes in both a reproducible way and a healthy ecological state, at local, regional and global scales. This axiological definition involves a large research agenda to explore the operative criteria and indicators needed to know how to achieve this goal. It has to be a transdisciplinary research, capable of linking some of the already existing methodologies, like Life-Cycle Analysis (LCA), Material and Energy Flow Accounting of Social Metabolism (MEFA), Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM), Agroecology, Landscape Ecology, Political Ecology and valuation of site-specific Biocultural Heritages of Peasant Knowledge. We will examine these approaches and the accounting methods, highlighting their strengths and weaknesses, so as to combine them in innovative ways within a common framework focused on the interactive relations among societal and ecological metabolisms. To do so in a non-eclectic manner requires an agroecological perspective when accounting energy and material flows of farm systems, linking them with landscape ecology patterns and processes which sustain farm-associated biodiversity and derived ecosystem services, and adopting at all times an environmental history standpoint.

Keywords

Agri-food systems Sustainability Social metabolism Agroecology Life-cycle analysis MuSIASEM Energy-landscape integrated analysis Peasant knowledge 

References

  1. Agnoletti, M. (Ed.). (2006). The conservation of cultural landscapes. Wallingford: CABI Pub.Google Scholar
  2. Agnoletti, M. (2014). Rural landscapes, nature conservation and culture. Some notes on research trends and management approaches from a (southern) European perspective. Landscape and Urban Planning, 126, 66–73. doi: 10.1016/j.landurbplan.2014.02.012.CrossRefGoogle Scholar
  3. Agnoletti, M., & Emanueli, F. (Eds.). (2016). Biocultural diversity in Europe. New York: Springer.Google Scholar
  4. Agnoletti, M., & Rotherham, I. A. (2015). Landscape and biocultural diversity. Biodiversity and Conservation, 24, 3155–3165. doi: 10.1007/s10531-015-1003-8.CrossRefGoogle Scholar
  5. Aguilera, E., Guzmán, G.I., Infante-Amate, J., Soto, D., García-Ruiz, R., Herrera, A., et al. (2015). Embodied energy in agricultural inputs. Incorporating a historical perspective. Working Papers of the Spanish Society for Agricultural History DT-SEHA 1507. Available at: https://ideas.repec.org/s/seh/wpaper.html. Accessed September 3, 2016.
  6. Aguilera, E., Infante-Amate, J., & González de Molina, M. (2014). La gran transformación del sector agroalimentario español. Un análisis desde la perspectiva energética (1960–2010). Working Papers of the Spanish Society for Agricultural History DT-SEHA 1403. Available at: https://ideas.repec.org/s/seh/wpaper.html. Accessed March 9, 2016.
  7. Aguilera, E., Lassaletta, L., Gattinger, A., & Gimeno, B. S. (2013). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems & Environment, 168, 25–36. doi: 10.1016/j.agee.2013.02.003.CrossRefGoogle Scholar
  8. Alonso, A. M., & Guzmán, G. I. (2010). Comparison of the efficiency and use of energy in organic and conventional farming in Spanish agricultural systems. Journal of Sustainable Agriculture, 34, 312–338. doi: 10.1080/10440041003613362.CrossRefGoogle Scholar
  9. Altieri, M. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31. doi: 10.1016/S0167-8809(99)00028-6.CrossRefGoogle Scholar
  10. Altieri, M. (2002). Agroecology: The science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(1–3), 1–24. doi: 10.1016/S0167-8809(02)00085-3.CrossRefGoogle Scholar
  11. Altieri, M. (2009). Agroecology, small farms, and food sovereignty. Monthly Review, 61(3), 102–113. Available at: http://monthlyreview.org/2009/07/01/agroecology-small-farms-and-food-sovereignty/.
  12. Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32, 1–13. doi: 10.1007/s13593-011-0065-6.CrossRefGoogle Scholar
  13. Altieri, M., & Toledo, V. (2011). The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. Journal of Peasant Studies, 38(3), 587–612. doi: 10.1080/03066150.2011.582947.CrossRefGoogle Scholar
  14. Andersson, J. O., & Lindroth, M. (2001). Ecologically unsustainable trade. Ecological Economics, 37, 113–122. doi: 10.1016/S0921-8009(00)00272-X.CrossRefGoogle Scholar
  15. Arizpe, N., Giampietro, M., & Ramos-Martin, J. (2011). Food security and fossil fuel dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Critical Reviews in Plant Sciences, 30, 45–63. doi: 10.1080/07352689.2011.554352.CrossRefGoogle Scholar
  16. Atkinson, A. B., Piketty, T., & Saez, E. (2011). Top incomes in the long run of history. Journal of economic literature, 49, 3–71. doi: 10.1257/jel.49.1.3.CrossRefGoogle Scholar
  17. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337, 1–18. doi: 10.1007/s11104-010-0464-5.CrossRefGoogle Scholar
  18. Aubry, C., & Kebir, L. (2013). Shortening food supply chains: A means for maintaining agriculture close to urban areas? The case of the French metropolitan area of Paris. Food Policy, 41, 85–93. doi: 10.1016/j.foodpol.2013.04.006.CrossRefGoogle Scholar
  19. Audsley, E. (Ed.). (1997). Harmonisation of environmental life cycle assessment for agriculture. EU Concerted Action report Final Report. Concerted Action AIR3-CT94-2028. Available at: https://www.researchgate.net/publication/258966401_EU_Concerted_Action_report_HARMONISATION_OF_ENVIRONMENTAL_LIFE_CYCLE_ASSESSMENT_FOR_AGRICULTURE_Final_Report_Concerted_Action_AIR3-CT94-2028. Accessed September 5, 2016.
  20. Axelrod, R. (1997). The complexity of cooperation. Agent-based models of competition and collaboration. Princeton: Princeton Univeristy Press.CrossRefGoogle Scholar
  21. Axelrod, R. (2006). The evolution of cooperation. Cambridge, MA: Basic Books.Google Scholar
  22. Barrera-Bassols, N., & Toledo, V. (2005). Ethnoecology of the Yucatec Maya: Symbolism, knowledge and management of natural resources. JLAG, 4, 9–41. doi: 10.1353/lag.2005.0021.CrossRefGoogle Scholar
  23. Barrett, G. W. (1992). Landscape ecology. Designing sustainable agricultural landscapes. Journal of Sustainable Agriculture, 2, 83–103. doi: 10.1300/J064v02n03_07.CrossRefGoogle Scholar
  24. Bengston,.J, Angelstam, P., Elmqvist, T., Emanuelsson, U., Folke, C., Ihse, M., et al. (2003). Reserves, resilience and dynamic landscapes. Ambio, 32, 389–396. doi: 10.1579/0044-7447-32.6.389.
  25. Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18, 182–188. doi: 10.1016/S0169-5347(03)00011-9.CrossRefGoogle Scholar
  26. Berkes, F., Colding, J., & Folke C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications, 10, 1251–1262. doi: 10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2.
  27. Berkes, J., Folke, C., & Colding, F. (2003). Navigating social-ecological systems building resilience for complexity and change. Cambridge: Cambridge University Press.Google Scholar
  28. Bernstein, H. (2016). Agrarian political economy and modern world capitalism: The contributions of food regime analysis. The Journal of Peasant Studies, 43, 611–647. doi: 10.1080/03066150.2015.1101456.CrossRefGoogle Scholar
  29. Billen, G., Garnier, J., Thieu, V., Silvestre, M., Barles, S., & Chatzimpiros, P. (2012). Localising the nitrogen imprint of the Paris food supply: The potential of organic farming and changes in human diet. Biogeosciences, 9, 607–616. doi: 10.5194/bg-9-607-2012.CrossRefGoogle Scholar
  30. Borras, S. M., Jr., Franco, J. C., & Suárez, S. M. (2015). Land and food sovereignty. Third World Quarterly, 36, 600–617. doi: 10.1080/01436597.2015.1029225.CrossRefGoogle Scholar
  31. Borras, S. M., Kay, C., Gómez, S., & Wilkinson, J. (2012). Land grabbing and global capitalist accumulation: Key features in Latin America. Canadian Journal of Development Studies/Revue Canadienne D’études Du Développement, 33(4), 402–416. doi: 10.1080/02255189.2012.745394.CrossRefGoogle Scholar
  32. Boyd, R., Gintis, H., Bowles, S., & Richerson, P. J. (2003). The evolution of altruistic punishment. Proceedings of the National Academy of Sciences of the United States of America, 100, 3531–3535. doi: 10.1073/pnas.0630443100.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Bowles, S., & Gintis, H. (2011). A cooperative species: Human reciprocity and its evolution. Princeton: Princeton Univeristy Press.CrossRefGoogle Scholar
  34. Busch, T., & Sakhel, A. (2016). The island logic. Scaling up the concept of self-preserving Autarky. Journal of Industrial Ecology, 20(5), 1008–1009. doi: 10.1111/jiec.12452.CrossRefGoogle Scholar
  35. Campbell, H. (2009). Breaking new ground in food regime theory: Corporate environmentalism, ecological feedbacks and the ‘food from somewhere’ regime? Agriculture and Human Values, 2009(26), 309–319. doi: 10.1007/s10460-009-9215-8.CrossRefGoogle Scholar
  36. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. doi: 10.1038/nature11148.PubMedCrossRefGoogle Scholar
  37. Cattaneo, C., D’Alisaa, G., Kallis, G., & Zografos, C. (2012). Degrowth futures and democracy. Futures, 44, 515–523. doi: 10.1016/j.futures.2012.03.012.CrossRefGoogle Scholar
  38. Chang, H. J. (2002). Kicking away the ladder. Development strategy in historical perspective. London: Anthem Press.Google Scholar
  39. Commoner, B. (1990). Making peace with the planet. New York: Pantheon Books.Google Scholar
  40. Costanza, R., Bernard, C., & Patten, B. C. (1995). Defining and predicting sustainability. Ecological Economics, 15, 193–196. doi: 10.1016/0921-8009(95)00048-8.
  41. Claeys, P. (2015). Human rights and the food sovereignty movement: Reclaiming control. New York: Routledge.Google Scholar
  42. Dahl, R. A. (1985). A preface to economic democracy. Berkeley: The Univeristy of California Press.Google Scholar
  43. Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems & Environment, 87, 51–65. doi: 10.1016/S0167-8809(00)00297-8.CrossRefGoogle Scholar
  44. Daly, H. (2005). Economics in a full world. Scientific American, 293(100), 107. doi: 10.1038/scientificamerican0905-100.Google Scholar
  45. Davidson, E. A., & Howarth, R. W. (2007). Environmental science: Nutrients in synergy. Nature, 449, 1000–1001. doi: 10.1038/4491000a.PubMedCrossRefGoogle Scholar
  46. De Groot R., Fisher, B., Christie, M., Aronson, J., Braat, L, Gowdy, J., et al. (2010). The economics of ecosystems and biodiversity: The ecological and economic foundations. Available at: http://www.teebweb.org/our-publications/. Accessed January 1, 2017.
  47. González de Molina, M. (2013). Agroecology and politics. How to get sustainability? About the necessity for a political agroecology. Agroecology and Sustainable Food Systems, 37, 45–59. doi: 10.1080/10440046.2012.705810.
  48. González de Molina, M., & Toledo, V. M. (2014). The social metabolism: A socio-ecological theory of historical change. New York: Springer.Google Scholar
  49. González de Molina, M. (2015). Agroecology and politics: On the importance of public policies in Europe. Law and Agroecology. A transdisciplinary dialogue (pp. 395–410). Berlin: Springer.Google Scholar
  50. Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 25–29. doi: 10.1098/rspb.2000.1325.CrossRefGoogle Scholar
  51. Douthwaite, R. (2003). Short circuit: Strengthening local economies in an unstable world. Dublin: Liliput Press.Google Scholar
  52. Dutilh, C. E., & Kramer, K. J. (2000). Energy consumption in the food chain. Comparing alternative options in food production and consumption. Ambio, 29, 98–101. doi: 10.1579/0044-7447-29.2.98.CrossRefGoogle Scholar
  53. Edwards, C. A., Grove, R. R., Harwood, C. J., & Colfer, P. (1993). The role of agroecology and integrated farming systems in agricultural sustainability. Agriculture, Ecosystems & Environment, 46, 99–121. doi: 10.1016/0167-8809(93)90017-J.CrossRefGoogle Scholar
  54. Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x.PubMedCrossRefGoogle Scholar
  55. Engel-Di Mauro, S. (2014). Ecology, Soils and the left: An ecosocial approach. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  56. Erb, K. H. (2012). How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecological Economics, 76, 8–14. doi: 10.1016/j.ecolecon.2012.02.005.PubMedCrossRefGoogle Scholar
  57. Erb, K.-H., Haberl, H., Krausmann, F., Lauk, C., Plutzar, C., Steinberger, J., et al. (2009a). Eating the planet: Feeding and fuelling the world sustainably, fairly and humanely—a scoping study. London: Compassion in World Farming, River Court/Friends of the Earth. Available at: https://www.foe.co.uk/sites/default/files/downloads/eating_planet_report.pdf. Accessed August 19, 2016.
  58. Erb, K.-H., Krausmann, F., Lucht, W., & Haberl, H. (2009b). Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecological Economics, 69, 328–334. doi: 10.1016/j.ecolecon.2009.06.025.CrossRefGoogle Scholar
  59. EUROSTAT. (2001). Economy-wide material flow accounts and derived indicators. A methodological guide. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  60. FAO, IFAD, & WFP. (2014). The State of food insecurity in the world. Strengthening the enabling environment for food security and nutrition. Rome: FAO.Google Scholar
  61. Farina, A. (1997). Landscape structure and breeding bird distribution in a sub-Mediterranean agro-ecosystem. Landscape Ecology, 12, 365–378. doi: 10.1023/A:1007934518160.CrossRefGoogle Scholar
  62. Fischer, J., Brosi, B., Daily, G. C., Ehrlich, P. R., Goldman, R., Goldstein, J., et al. (2008). Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment, 6, 380–385. doi: 10.1890/070019.CrossRefGoogle Scholar
  63. Fischer-Kowalski, M., Krausmann, F., & Smetschka, B. (2004). Modelling scenarios of transport across history from a socio-metabolic perspective. Review (Fernand Braudel Center), 27, 307–342. doi:http://www.jstor.org/stable/40241610.
  64. Fischer-Kowalski, M., & Haberl, H. (2007). Socioecological transitions and global change: Trajectories of social metabolism and land use. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  65. Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S., et al. (2011a). Methodology and indicators of economy-wide material flow accounting state of the art and reliability across sources. Journal of Industrial Ecology, 15, 855–876. doi: 10.1111/j.1530-9290.2011.00366.x.CrossRefGoogle Scholar
  66. Fischer-Kowalski, M., Singh, S. J., Lauk, C., Remesch, A., Ringhofer, L., & Grünbühel, C. M. (2011b). Sociometabolic transitions in subsistence communities: Boserup revisited in four comparative case studies. Human Ecology Review, 18(2), 147–158.Google Scholar
  67. Foster, J. B., & Holleman, H. (2014). The theory of unequal ecological exchange: A Marx-Odum dialectic. Journal of Peasant Studies, 41, 199–233. doi: 10.1080/03066150.2014.889687.CrossRefGoogle Scholar
  68. Freibauer, W., Rounsevell, M. D. A., Smith, P., & Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1–23. doi: 10.1016/j.geoderma.2004.01.021.CrossRefGoogle Scholar
  69. Friedmann, H. (1987). International regimes of food and agriculture since 1870. In T. Shanin (Ed.), Peasants and peasant societies (pp. 258–276). Oxford: Basil Blackwel.Google Scholar
  70. Friedmann, H. (2016). Commentary: Food regime analysis and agrarian question: Widening the conversation. Journal of Peasant Studies, 43, 671–692. doi: 10.1080/03066150.2016.1146254.CrossRefGoogle Scholar
  71. Galán, E., Padró, R., Marco, I., Tello, E., Cunfer, G., Guzmán, G. I., et al. (2016). Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (The Vallès County, Catalonia, c.1860 and 1999). Ecological Modelling, 336, 13–25. doi: 10.1016/j.ecolmodel.2016.05.012.CrossRefGoogle Scholar
  72. Georgescu-Roegen, N. (1971). The entropy law and the economic process. Cambridge, London: Harvard University Press.CrossRefGoogle Scholar
  73. Georgescu-Roegen, N. (1976). The institutional aspects of peasant communities: An analytical view. In N. Georgescu-Roegen (Eds.), Energy and economic myths. Institutional and analytical economic essays (pp. 199–234). New York: Pergamon.Google Scholar
  74. Georgescu-Roegen, N. (1977). Inequality, limits and growth from a bioeoconomic viewpoint. Review of Social Economy, 35, 361–175. doi: 10.1080/00346767700000041.
  75. Giampietro, M. (1997). Socioeconomic constraints to farming with biodiversity. Agriculture, Ecosystems & Environment, 62, 145–167. doi: 10.1016/S0167-8809(96)01137-1.CrossRefGoogle Scholar
  76. Giampietro, M. (2003). Multi-scale integrated analysis of agroecosystems. Florida: CRC Press LLC.CrossRefGoogle Scholar
  77. Giampietro, M., Mayumi, K., & Sorman, A. H. (2012). The metabolic pattern of societies: Where economists fall short. London: Routledge.Google Scholar
  78. Giampietro, M., Mayumi, K., & Sorman, A. H. (2013). Energy analysis for sustainable future: Multi-scale integrated analysis of societal and ecosystem metabolism. London: Routledge.Google Scholar
  79. Gingrich, S., Haidvogl, G., Krausmann, F., Preis, S., & Garcia-Ruiz, R. (2015). Providing food while sustaining soil fertility in two pre-industrial Alpine agroecosystems. Human Ecology: an Interdisciplinary Journal, 43, 395–410. doi: 10.1007/s10745-015-9754-0.CrossRefGoogle Scholar
  80. Glavič, P., & Lukman, R. (2008). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15, 1875–1885. doi: 10.1016/j.jclepro.2006.12.006.CrossRefGoogle Scholar
  81. Gliessman, S. R. (2000). Agroecology. Ecological processes in sustainable agriculture. Boca Raton: Lewis Publishers/CRC Press.Google Scholar
  82. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818. doi: 10.1126/science.1185383.PubMedCrossRefGoogle Scholar
  83. Gómez-Baggethun, E., Corbera, E., & Reyes-García, V. (2013). Traditional ecological knowledge and global environmental change: Research findings and policy implications. Ecology and Society, 18(4). doi: 10.5751/ES-06288-180472.
  84. Gómez-Baggethun, E., & Reyes-García, V. (2013). Reinterpreting change in traditional ecological knowledge. Human Ecology: An Interdisciplinary Journal, 41. doi: 10.1007/s10745-013-9577-9.
  85. Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8, 281. doi: 10.3390/su8030281.CrossRefGoogle Scholar
  86. Gomiero, T. (2015). Effects of agricultural activities on biodiversity and ecosystems: Organic versus conventional farming. In G. M. Robinson & D. A. Carson (Eds.), Handbook on the globalization of agriculture (pp. 77–105). Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  87. Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and environmental issues in organic and conventional agriculture. Critical Reviews in Plant Sciences, 27, 239–254. doi: 10.1080/07352680802225456.CrossRefGoogle Scholar
  88. Gomiero, T., Pimentel, D., & Paoletti, M.G. (2011). Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Critical Reviews in Plant Sciences, 30, 95–12. doi: 10.1080/07352689.2011.554355.
  89. Graham, M. (2008). Nesting, subsidiarity, and community-based environmental governance beyond the local scale. International Journal of the Commons, 2, 75–97. doi: 10.18352/ijc.50.Google Scholar
  90. Green, R. E., Cornell, S. J., Scharlemann, J. P. W., & Balmford, A. (2005). Farming and the Fate of Wild Nature. Science, 307, 550–551. doi: 10.1126/science.1106049.PubMedCrossRefGoogle Scholar
  91. Greenwald, B. C., & Stiglitz, J. E. (1986). Externalities in economies with imperfect information and incomplete markets. The Quarterly Journal of Economics, 101, 229–264. doi: 10.2307/1891114.CrossRefGoogle Scholar
  92. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A. (2011). Global food loses and food waste. Extent, causes and prevention. Rome: FAO. Available at: http://www.fao.org/docrep/014/mb060e/mb060e.pdf. (A full version of this report is available at https://www.researchgate.net/publication/267919405. Accessed November 13, 2016.
  93. Guzmán, G. I., & Alonso, A. M. (2008). A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 98, 167–176. doi: 10.1016/j.agsy.2008.06.004.CrossRefGoogle Scholar
  94. Guzmán, G. I., & González de Molina, M. (2009). Preindustrial agriculture versus organic agriculture: The land cost of sustainability. Land Use Policy, 26, 502–510. doi: 10.1016/j.landusepol.2008.07.004.CrossRefGoogle Scholar
  95. Guzmán, G. I., González de Molina, M., & Alonso, A. M. (2011). The land cost of agrarian sustainability. An assessment. Land Use Policy, 28, 825–835. doi:  10.1016/j.landusepol.2011.01.010.
  96. Guzmán, G., Aguilera, E., Soto, D., Cid, A., Infante, J., Garcia-Ruiz, R., et al. (2014). Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agroecosystems (I). Working Papers of the Spanish Society for Agricultural History DT-SEHA 1407. Available at: https://ideas.repec.org/s/seh/wpaper.html. Accessed September 3, 2016.
  97. Guzmán, G. I., & González de Molina, M. (2015). Energy efficiency in agrarian systems from an agroecological perspective. Agroecology and Sustainable Food Systems, 39, 924–952. doi: 10.1080/21683565.2015.1053587.CrossRefGoogle Scholar
  98. Guzmán-Casado, G. I., & González de Molina, M. (2017). Energy in agroecosystems. A tool for assessing sustainability. Boca Ratón (FL): CRC Press.Google Scholar
  99. Haas, W., Krausmann, F. Wiedenhofer, D., & Heinz, M. (2016). How circular is the global economy? A sociometabolic analysis. In H. Haberl, M. Fischer-Kowalski, F. Krausmann, V., Winiwarter (Eds.), Social ecology: Society-nature relations across time and space (pp. 259–276). New York: Springer. doi: 10.1007/978-3-319-33326-7_11.
  100. Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21, 199–213. doi: 10.1016/j.landusepol.2003.10.013.CrossRefGoogle Scholar
  101. Haberl, H., Fischer-Kowalski, M., Krausmann, F., & Winiwarter, V. (Eds.). (2016). Social Ecology. Society-Nature Relations across Time and Space. Berlin: Springer.Google Scholar
  102. Haberl, H., & Weisz, H. (2007). The potential use of the Materials and Energy Flow Analysis (MEFA) framework to evaluate the environmental costs of agricultural production systems and possible applications to aquaculture. Rome: FAO. Fisheries and Aquaculture Department eng. http://agris.fao.org/agris-search/search.do?recordID=XF2016008927. Accessed August 18, 2016.
  103. Hamilton, A., Balogh, S., Maxwell, A., & Hall, C. (2013). Efficiency of edible agriculture in Canada and the U.S. over the past three and four decades. Energies, 6, 1764–1793. doi: 10.3390/en6031764.CrossRefGoogle Scholar
  104. Hinterberger, F., Giljum, S., & Hammer, M. (2003). Material Flow Accounting and Analysis (MFA). A Valuable Tool for Analyses of Society-Nature Interrelationships. Internet Encyclopedia of Ecological Economics. Avilable at: http://alt.seri.at/en/publications/online-publications/2009/09/22/material-flow-accounting-and-analysis-mfa-a-valuable-tool-for-analyses-of-society-nature-interrelationships/. Accessed August 18, 2016.
  105. Ho, M. W. (2013). Circular thermodynamics of organisms and sustainable systems. Systems, 1, 30–49. doi: 10.3390/systems1030030.CrossRefGoogle Scholar
  106. Ho, M. W., & Ulanowicz, R. U. (2005). Sustainable systems as organisms? BioSystems, 82, 39–51. doi: 10.1016/j.biosystems.2005.05.009.PubMedCrossRefGoogle Scholar
  107. Holt-Giménez, E. (Ed.). (2011). Food movements unite! Strategies to transform our food system. Oakland: Food First Books.Google Scholar
  108. Holt-Giménez, E., Patel, R., & Shattuck, A. (Eds.). (2009). Food rebellions: Crisis and the hunger for justice. Boston: Pambazuka Press.Google Scholar
  109. Holt-Giménez, E., & Shattuck, A. (2011). Food crises, food regimes and food movements: rumblings of reform or tides of transformation? The Journal of Peasant Studies, 38(1), 109–144. doi: 10.1080/03066150.2010.538578.PubMedCrossRefGoogle Scholar
  110. Hornborg, A., McNeill, J. R., & Martínez Alier, J. (Eds.). (2007). Rethinking environmental history. World-system history and global environmental change. New York: Altamira Press.Google Scholar
  111. IAASTD (International Assessment of Agricultural Knowledge, Science and Technology for Development). (2009). Agriculture at a crossroads. In International Assessment of Agricultural Knowledge, Science and Technology for Development Global Report, Island Press, Washington, D.C.Google Scholar
  112. IFAD. (2016). Rural development report 2016. Fostering inclusive rural transformation. Rome: International Fund for Agricultural Development.Google Scholar
  113. Infante-Amate, J., & González de Molina, M. (2013). ‘Sustainable de-growth’ in agriculture and food: An agro-ecological perspective on Spain’s agri-food system (year 2000). Journal of Cleaner Production, 38, 27–35. doi: 10.1016/j.jclepro.2011.03.018.CrossRefGoogle Scholar
  114. Infante-Amate, J., Soto, D., Aguilera, E., García Ruiz, R., Guzmán, G., Cid, A., et al. (2015). The Spanish transition to industrial metabolism long-term material flow analysis (1860–2010). Journal of Industrial Ecology, 19, 866–876. doi: 10.1111/jiec.12261.CrossRefGoogle Scholar
  115. Inger, R., Gregory, R., Duffy, J. P., Stott, I., Vorisek, P., & Gaston, K. J. (2015). Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecology Letters, 18, 28–36. doi: 10.1111/ele.12387.PubMedCrossRefGoogle Scholar
  116. ISO. (1997). Environmental management life cycle assessment principles and framework. The International Organization for Standardization, Geneva. ISO14040. Available at: http://www.iso.org/iso/catalogue_detail?csnumber=37456. Accessed August 18, 2016.
  117. Johanisova, N., & Wolf, S. (2012). Economic democracy: A path for the future? Futures, 44, 562–570. doi: 10.1016/j.futures.2012.03.017Jungbluth.
  118. Jones, A. (2001). Eating oil. Food supply in a changing climate. London: Sustain & Elm Farm Research Centre. Availabe at: https://ia800501.us.archive.org/24/items/Eating_Oil-Food_Supply_in_a_Changing_Climate/Eating_Oil-Food_Supply_in_a_Changing_Climate.pdf. Accessed August 19, 2016.
  119. Jungbluth, N., & Demmeler, M. (2005). The ecology of scale: Assessment of regional energy turnover and comparison with global food. In E. Schlich & U. Fleissner (Eds.), The International Journal of Life Cycle Assessment, 10, 168–170. doi: 10.1065/lca2004.11.191.
  120. Jordan, C. F. (2016). The farm as a thermodynamic system: Implications of the maximum power principle. BioPhysical Economics and Resource Quality (On-line Preview), 1–9. doi: 10.1007/s41247-016-0010-z.
  121. Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition, and framework for evaluation (A guest editorial). Soil Science Society of America Journal, 61, 4–10. doi: 10.2136/sssaj1997.03615995006100010001x.CrossRefGoogle Scholar
  122. Kent, M. (2012). Vegetation description and data analysis. Oxford: Wiley.Google Scholar
  123. Kleinert, S., & Horton, R. (2015). Rethinking and reframing obesity. Lancet, 385(9985), 2326–2328. doi: 10.1016/S0140-6736(15)60163-5.PubMedCrossRefGoogle Scholar
  124. Kneafsey, M. (2010). The region in food—important or irrelevant? Cambridge Journal of Regions, Economy and Society, 3, 177–190. doi: 10.1093/cjres/rsq012.CrossRefGoogle Scholar
  125. Koohafkan, P., & Altieri, M. A. (2010). Conserving our world’s agricultural heritage. Globally Important Agricultural Heritage Systems (GIAHS). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  126. Krausmann, F. (2004). Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Human Ecology: An Interdisciplinary Journal, 32, 735–772. doi: 10.1007/s10745-004-6834-y.CrossRefGoogle Scholar
  127. Krausmann, F., Erb, K. E., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 110, 10324–10329. doi: 10.1073/pnas.1211349110/-/DCSupplemental.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68, 2696–2705. doi: 10.1016/j.ecolecon.2009.05.007.
  129. Lauk, C., & Lutz, J. (2016). The future is made. Imagining feasible food and farming futures in an unpredictable world. In J. Niewöhner, A. Bruns, P., Hostert, T., Krueger, J. Ø. Nielsen, H. Haberl, C., Lauk, J., Lutz, D., Müller (Eds.), Land use competition. Ecological, economic and social perspectives (pp. 233–246). Cham (ZG): Springer International Publishing Switzerland.Google Scholar
  130. Luxemburg, R. (1964). The accumulation of capital. New York: Monthly Review Press.Google Scholar
  131. Magdoff, F., & Weil, R. E. (2004). Soil organic matter in sustainable agriculture. Boca Raton: CRC Press.CrossRefGoogle Scholar
  132. Marco, I., Padró, R., Cattaneo, C., Caravaca, J., & Tello, E. (2017, forthcoming). From vineyards to feedlots: A fund-flow scanning of socio-metabolic transitions in the Vallès County (Catalonia) (1860–1956–1999). Regional Environmental Change (published on-line first). doi: 10.1007/s10113-017-1172-y
  133. Markussen, M. V., & Østergård, H. (2013). Energy analysis of the Danish Foos Production System: Food-EROI and fossil fuel dependency. Energies, 6, 4170–4186. doi: 10.3390/en6084170.CrossRefGoogle Scholar
  134. Martínez Alier, J. (1987). Ecological economics: Energy, environment and society. Oxford: Blackwell.Google Scholar
  135. Martínez Alier, J. (2002). The environmentalism of the poor. A study of economic conflicts and valuation. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  136. Martínez Alier, J. (2011). The EROI of agriculture and its use by the Via Campesina. The Journal of Peasant Studies, 38, 145–160. doi: 10.1080/03066150.2010.538582.CrossRefGoogle Scholar
  137. Martínez-Torres, M. E., & Rosset, Peter M. (2010). La Vía Campesina: The birth and evolution of a transnational social movement. The Journal of Peasant Studies, 37(1), 149–175. doi: 10.1080/03066150903498804.CrossRefGoogle Scholar
  138. Martínez-Torres, M. E., & Rosset, Peter M. (2014). Diálogo de saberes in La Vía Campesina: food sovereignty and agroecology. The Journal of Peasant Studies, 41(6), 979–997. doi: 10.1080/03066150.2013.872632.CrossRefGoogle Scholar
  139. Marull, J., Font, C., Padró, R., Tello, E., & Panazzolo, A. (2016a). Energy-Landscape Integrated Analysis: A proposal for measuring complexity in internal agroecosystem processes (Barcelona Metropolitan Area, 1860–2000). Ecological Indicators, 66, 30–46. doi: 10.1016/j.ecolind.2016.01.015.CrossRefGoogle Scholar
  140. Marull, J., Font, C., Tello, E., Fullana, N., Domene, E., Pons, M., et al. (2016b). Towards an energy–landscape integrated analysis? Exploring the links between socio-metabolic disturbance and landscape ecology performance (Mallorca, Spain, 1956–2011). Landscape Ecology, 31, 317–336. doi: 10.1007/s10980-015-0245-x.CrossRefGoogle Scholar
  141. Marull, J., Pino, J., Tello, E., & Cordobilla, M. J. (2010). Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy, 27, 497–510. doi: 10.1016/j.landusepol.2009.07.004.CrossRefGoogle Scholar
  142. Marull, J., Tello, E., Fullana, N., Murray, I., Jover, G., Font, C., et al. (2015). Long-term biocultural heritage: Exploring the intermediate disturbance hypothesis in agro-ecological landscapes (Mallorca, c. 1850–2012). Biological Conservation, 24, 3217–3251. doi: 10.1007/s10531-015-0955-z.Google Scholar
  143. Marull, J., Tello, E., Wilcox, P., Coll, F., Pons, M., Warde, P., et al. (2014). Recovering the landscape history behind a Mediterranean edge environment (The Congost Valley, Catalonia, 1854–2005): The importance of agroforestry systems in biological conservation. Applied Geography, 54, 1–17. doi: 10.1016/j.apgeog.2014.06.030.CrossRefGoogle Scholar
  144. Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509. doi: 10.1126/science.277.5325.504.PubMedCrossRefGoogle Scholar
  145. Matson, P. A., & Vitousek, P. M. (2006). Agricultural Intensification: Will land spared from farming be land spred for nature? Conservation Biology, 20, 709–710. doi: 10.1111/j.1523-1739.2006.00442.x.PubMedCrossRefGoogle Scholar
  146. McDonnell, M. J., & Pickett, S. T. A. (Eds.). (1993). Humans as components of ecosystems. The ecology of subtle human effects and populated areas. New York: Springer.Google Scholar
  147. McKeon, N. (2015). Food security governance: Empowering communities, regulating corporations. New York: Routledge.Google Scholar
  148. McMichael, P. (2003). Food security and social reproduction: Issues and contradictions. In I. Bakker & S. Gillpp (Eds.), Power, production and social reproduction (pp. 169–189). New York: Palgrave MacMillan.CrossRefGoogle Scholar
  149. McMichael, P. (2008). Peasants make their own history, but not just as they please. Journal of Agrarian Change, 8, 205–228. doi: 10.1111/j.1471-0366.2008.00168.x.CrossRefGoogle Scholar
  150. McMichael, P. (2009). A food regime genealogy. The Journal of Peasant Studies, 36, 139–169. doi: 10.1080/03066150902820354.CrossRefGoogle Scholar
  151. McMichael, P. (2011). Food system sustainability: Questions of environmental governance in the new world (dis)order. Global Environmental Change, 21, 804–812. doi: 10.1016/j.gloenvcha.2011.03.016.CrossRefGoogle Scholar
  152. McMichael, P. (2013). Food regimes and agrarian questions. Halifax: Fernwood.CrossRefGoogle Scholar
  153. McMichael, P. (2016). Commentary: Food regime for thought. The Journal of Peasant Studies, 43, 648–670. doi: 10.1080/03066150.2016.1143816.CrossRefGoogle Scholar
  154. McNeely, J. A., & Scheer, S. (2003). Ecoagriculture. Strategies to feed the world and save biodiveristy. Washington: Island Press/Future Harvest/UICN.Google Scholar
  155. Mies, M. (1986). Patriarchy and accumulation at world scale. New York: Zed Books.Google Scholar
  156. Mies, M., & Shiva, V. (1993). Ecofeminism. New York: Seed Books.Google Scholar
  157. Milanovic, B. (2011). The haves and have nots. A brief and idiosyncratic history of global inequality. Philadelphia: Basic Books.Google Scholar
  158. Millennium Ecosystem Assessment (MA). (2005). Ecosystems and human well-being: A framework for assessment. Washington, D.C.: Island Press.Google Scholar
  159. Mitchell, M. G. E., Benett, E. M., & González, A. (2013). Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems, 16, 894–908. doi: 10.1007/s10021-013-9647-2.CrossRefGoogle Scholar
  160. Moguel, P., & Toledo, V. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology 13(1), 11–21.Google Scholar
  161. Mondelaers, K., Aertsens, J., & Van Huylenbroeck, G. (2009). A meta-analysis of the differences in environmental impacts between organic and conventional farming. British Food Journal, 111, 1098–1119. doi: 10.1108/00070700910992925.CrossRefGoogle Scholar
  162. Mooney, P. H. (2004). Democratizing rural economy: Institutional friction, sustainable struggle and the cooperative movement. Rural Sociology, 69, 76–98. doi: 10.1526/003601104322919919.CrossRefGoogle Scholar
  163. Morowitz, H. J. (2002). The emergence of everything: How the world became complex. Oxford: Oxford University Press.Google Scholar
  164. Morowitz, H. J., & Smith, E. (2007). Energy flow and the organization of life. Complexity, 13, 51–59. doi: 10.1002/cplx.20191.CrossRefGoogle Scholar
  165. Muradian, R., O’Connor, M., & Martinez-Alier, J. (2002). Embodied pollution in trade: Estimating the ‘environmental load displacement’ of industrialised countries. Ecological Economics 41, 51–67. doi: 10.1016/S0921-8009(01)00281-6.
  166. Muradian, R., & Martinez-Alier, J. (2001). Trade and the environment: From a ‘Southern’ perspective. Ecological Economics, 36, 281–297. doi: 10.1016/S0921-8009(00)00229-9.CrossRefGoogle Scholar
  167. NCD Risk Factor Collaboration (NCD-RisC). (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet, 387(10026), 1377–1396. doi: 10.1016/S0140-6736(16)30054-X.
  168. Neher, D. (1992). Ecological sustainability in agricultural systems: Definition and measurement. Journal of Sustainable Agriculture, 2, 51–61. doi: 10.1300/J064v02n03_05.CrossRefGoogle Scholar
  169. Odum, H. T. (1988). Self-organization, transformity, and information. Science, 242, 1132–1138.PubMedCrossRefGoogle Scholar
  170. Odum, H. T. (2001). A prosperous way down. Boulder: University Press of Colorado.Google Scholar
  171. Odum, H. T. (2007). Environment, power and society for the twenty-first century: The hierchy of energy. New York: Columbia University Press.Google Scholar
  172. OECD. (2008). Measuring Materal Flows and Resource Productivity. Paris: OECD. https://www.oecd.org/environment/indicators-modelling-outlooks/MFA-Guide.pdf. Accessed August 18, 2016.
  173. Otero, I., Marull, J., Tello, E., Diana, G. L., Pons, M., Coll, F., et al. (2015). Land abandonment, landscape, and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecology and Society, 20, 7. doi: 10.5751/ES-07378-200207.CrossRefGoogle Scholar
  174. Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B, 365, 3065–3081. doi: 10.1098/rstb.2010.0126.CrossRefGoogle Scholar
  175. Patel, R. (2012). The long green revolution. The Journal of Peasant Studies, 40, 1–63. doi: 10.1080/03066150.2012.719224.CrossRefGoogle Scholar
  176. Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., et al. (2011). Energy intensity of agriculture and food systems. Annual Review of Environment and Resources, 36, 223–246. doi: 10.1146/annurev-environ-081710-161014.CrossRefGoogle Scholar
  177. Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences of the United States of America, 107, 5786–5791. doi: 10.1073/pnas.0905455107.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Perignon, M., Masset, G., Ferrari, G., Barré, T., Vieux, F., Maillot, M., Amiot, M. J. & Darmon, N. (2016). How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutrition (published on-line first). doi: 10.1017/S1368980016000653Phalan.
  179. Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: Land Sharing and land sparing compared. Science, 333, 1289–1291. doi: 10.1126/science.1208742.PubMedCrossRefGoogle Scholar
  180. Piketty, T., & Saez, E. (2013). Top incomes and the great recession: Recent evolutions and policy implications. IMF Economic Review, 61, 456–478. doi: 10.1057/imfer.2013.14.CrossRefGoogle Scholar
  181. Pimbert, M. (2009). Towards food sovereignty. Workin Paper 141 of the International Institute for Environment and Development (IIED), London. Available at: http://hdl.handle.net/10535/5851. Accessed August 11, 2016.
  182. Pingali, P. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America, 109, 12302–12308. doi: 10.1073/pnas.0912953109.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Polanyi, K. (2001). The great transformation. The political and economic origins of our time. Boston (MA): Beacon Press.Google Scholar
  184. Ponisio, L. C., M’Gonigle, L. K., Mace, K. C., Palomino, J., de Valpine, P., & Kremen, C. (2015). Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society of London B, 282, 20141396. doi: 10.1098/rspb.2014.1396.CrossRefGoogle Scholar
  185. Pracha, A. S., & Volk, T. A. (2011). An edible Energy Return on Investment (EEROI) analysis of wheat and rice in Pakistan. Sustainability, 3, 2358–2391. doi: 10.3390/su3122358.CrossRefGoogle Scholar
  186. Ravera, F., Scheidel, A., Dell’Angelo, J., Gamboa, G., Serrano, T., Mingorría, S., et al. (2014). Pathways of rural change: An integrated assessment of metabolic patterns in emerging ruralities. Environment, Development and Sustainability, 16, 811–820. doi: 10.1007/s10668-014-9534-9.CrossRefGoogle Scholar
  187. Ravetz, J., & Funtowicz, S. (2015). Post-normal science. In: S. Meisch, J. Lundershausen, L. Bossert, & M. Rockoff (Eds.), Ethics of science in the research for sustainable development (pp. 99–112). Baden-Baden: Nomos. doi: 10.5771/9783845258430-99.
  188. Reap, J., Roman, F., Duncan, S., & Bras, B. (2008a). A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. International Journal of Life Cycle Assessment, 13, 290–300. doi: 10.1007/s11367-008-0009-9.CrossRefGoogle Scholar
  189. Reap, J., Roman, F., Duncan, S., & Bras, B. (2008b). A survey of unresolved problems in life cycle assessment. Part 2: Impact assessment and interpretation. The International Journal of Life Cycle Assessment, 13, 374. doi: 10.1007/s11367-008-0009-9.
  190. Reinert, E. S. (2004). Globalization, economic development and inequality: An alternative perspective. Cheltenham: Edward Elgar.CrossRefGoogle Scholar
  191. Renting, H., Marsden, T. K., & Banks, J. (2003). Understanding alternative food networks: Exploring the role of short food supply chains in rural development. Environment and Planning A, 35, 393–411. doi: 10.1068/a3510.CrossRefGoogle Scholar
  192. Reyes-García, V., Martí, N., McDade, T., Tanner, S., Vadez, V. (2007). Concepts and methods in studies measuring individual ethnobotanical knowledge. Journal of Ethnobiology, 27, 182–203. doi: 10.2993/0278-0771(2007)27[182:CAMISM]2.0.CO;2.
  193. Riolo, R. L., Cohen, M. D., & Axelrod, R. (2001). Evolution of cooperation without reciprocity. Nature, 414, 441–443. doi: 10.1038/35106555.PubMedCrossRefGoogle Scholar
  194. Rosset, P. M. (2011). Preventing hunger: Change economic policy. Nature, 479, 472–473. doi: 10.1038/479472a.PubMedCrossRefGoogle Scholar
  195. Rosset, P. M. (2013). Re-thinking agrarian reform, land and territory in La Via Campesina. Journal of Peasant Studies, 40(4), 721–775. doi: 10.1080/03066150.2013.826654.CrossRefGoogle Scholar
  196. Rosset, P. M., & Martínez-Torres, M. E. (2012). Rural social movements and agroecology: Context, theory, and process. Ecology and Society, 17(3), 17. doi: 10.5751/ES-05000-170317.CrossRefGoogle Scholar
  197. Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., & Nakamura, N., et al. (2009). A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering , 90, 1–10. doi: 10.1016/j.jfoodeng.2008.06.016.
  198. Sage, C. (2013). The inter-connected challenges for food security from a food regimes perspective: Energy, climate and malconsumption. Journal of Rural Studies, 29, 71–80. doi: 10.1016/j.jrurstud.2012.02.005.CrossRefGoogle Scholar
  199. Sand, P. H. (2004). Sovereignty bounded: Public trusteeship for common pool resources? Global Environmental Politics, 4, 47–71. doi: 10.1162/152638004773730211.
  200. Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J. L., Sheil, D., Meijaard, E., Venter, M., et al. (2013). Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proceedings of the National Academy of Sciences, 110(21), 8349–8356. doi: 10.1073/pnas.1210595110.
  201. Scarborough, P., Allender, S., Clarke, D., Wickramasinghe, K., & Rayner, M. (2012). Modelling the health impact of environmentally sustainable dietary scenarios in the UK. European Journal of Clinical Nutrition, 66, 710–715. doi: 10.1038/ejcn.2012.34.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Schlich, E., & Fleissner, U. (2003). Comparison of regional energy turnover with global food. The International Journal of Life Cycle Assessment, 8, 252–252. doi: 10.1007/BF02978482.
  203. Schlich, E., & Fleissner, U. (2005a). The ecology of scale: Assessment of regional energy turnover and comparison with global food. The International Journal of Life Cycle Assessment, 10, 171–172. doi: 10.1065/lca2005.02.200.
  204. Schlich, E., & Fleissner, U. (2005b). the ecology of scale: Assessment of regional energy turnover and comparison with global food. The International Journal of Life Cycle Assessment, 10, 219–223. doi: 10.1065/lca2004.09.180.9.
  205. Schneider, M., & McMichael, P. (2010). Deepening, and repairing, the metabolic rift. Journal of Peasant Studies, 37, 461–484. doi: 10.1080/03066150.2010.494371.PubMedCrossRefGoogle Scholar
  206. Schroll, H. (1994). Energy-flow and ecological sustainability in Danish agriculture. Agriculture, Ecosystems & Environment, 51, 301–310. doi: 10.1016/0167-8809(94)90142-2.CrossRefGoogle Scholar
  207. Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. doi: 10.1038/nature10386.PubMedCrossRefGoogle Scholar
  208. Schöggl, J. P., Fritz, M. M. C., & Baumgartner, R. J. (2016). Toward supply chain-wide sustainability assessment: A conceptual framework and an aggregation method to assess supply chain performance. Journal of Cleaner Production, 131, 822–835. doi: 10.1016/j.jclepro.2016.04.035.CrossRefGoogle Scholar
  209. Sen, A. K. (1959). The choice of agricultural techniques in underdeveloped countries. Economic Development and Cultural Change, 7, 279–285. http://www.jstor.org/stable/1151637.
  210. Shanin, T. (1972). The awkward class. Political sociology of peasantry in a developing society: Russia 1910–1925. Oxford: Clarendon Press.Google Scholar
  211. Shanin, T. (Ed.). (1987). Peasants and peasant societies. Oxford: Basil Blackwel.Google Scholar
  212. Shiva, V. (2000). Stolen harvest: The hijacking of the global food supply. London: Zeed Books.Google Scholar
  213. Shiva, V. (2005). Earth democracy: Justice, sustainability, and peace. Cambridge MA: South End Press.Google Scholar
  214. Shiva, V., & Gitanjali, B. (Eds.). (2002). Sustainable agriculture and food security: The impact of globalisation. New Delhi: Sage.Google Scholar
  215. Singh, S.J., Ringhofer, L., Haas, W., Krausmann, F., Lauk, C., & Fischer-Kowalski, M. (2010). Local studies manual: A researcher’s guide for investigating the social metabolism of rural systems. Social Ecology Working Paper 120, IFF Social Ecology, Vienna. Available at: http://www.uni-klu.ac.at/socec/downloads/WP120_Web.pdf. Accessed October 14, 2016.
  216. Smil, V. (2000). Feeding the world: A challenge for the twenty-first century. Cambridge (Massachusetts): The MIT Press.Google Scholar
  217. Smil, V. (2003). China’s past, China’s future: Energy, food, environment. New York: Routledge.Google Scholar
  218. Smil, V. (2012). Harvesting the biosphere. What we have taken from nature. Cambridge (Massachusetts): The MIT Press.Google Scholar
  219. Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133, 247–266. doi: 10.1016/j.agee.2009.04.021.CrossRefGoogle Scholar
  220. Soto, D., Infante-Amate, J., Guzmán, G. I., Cid, A., Aguilera, E., García, R., et al. (2016). The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems. Ecological Economics, 128, 130–138. doi: 10.1016/j.ecolecon.2016.04.017.CrossRefGoogle Scholar
  221. Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O: C molar ratios. Carbon Management, 1, 289–303. doi: 10.4155/CMT.10.32.CrossRefGoogle Scholar
  222. Stiglitz, J. (2012). The price of inequality: How today’s divided society endangers our future. New York: W.W. Norton & Co.Google Scholar
  223. Stiglitz, J. (2015). The great divide. Harmondsworth: Penguin.Google Scholar
  224. Suh, S. (2005). Theory of materials and energy flow analysis in ecology and economics. Ecological Modelling, 189(3–4), 251–269. doi: 10.1016/j.ecolmodel.2005.03.011.CrossRefGoogle Scholar
  225. Swift, M. J., Izac, A. M. N., & van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems & Environment, 104, 113–134. doi: 10.1016/j.agee.2004.01.013.CrossRefGoogle Scholar
  226. Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L., et al. (2011). The global obesity pandemic: Shaped by global drivers and local environments. Lancet, 378(9793), 804–814. doi: 10.1016/S0140-6736(11)60813-1.PubMedCrossRefGoogle Scholar
  227. Tadei, F. (2014). Extractive institutions and gains from trade: Evidence from colonial Africa. CEPR, NBER and Università Bocconi Workin Paper No. 536. Available at: ftp://ftp.igier.unibocconi.it/wp/2014/536.pdf. Accessed September 5, 2016.Google Scholar
  228. Taylor, W. P. (1934). Significance of Extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of liebig’s law of minimum. Ecology, 15, 374–379. doi: 10.2307/1932352.CrossRefGoogle Scholar
  229. Tello, E., Garrabou, R., Cussó, X., Olarieta, J. R., & Galán, E. (2012). Fertilizing methods and nutrient balance at the end of traditional organic agriculture in the Mediterranean bioregion. Catalonia (Spain) in the 1860s. Human Ecology: An Interdisciplinary Journal, 40, 369–383. doi: 10.1007/s10745-012-9485-4.CrossRefGoogle Scholar
  230. Tello, E., Galán, E., Sacristán, V., Cunfer, G., Guzmán, G. I., González de Molina, M., et al. (2016). Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (The Vallès County, Catalonia, c.1860 and 1999). Ecological Economics, 121, 160–174. doi: 10.1016/j.ecolecon.2015.11.012.CrossRefGoogle Scholar
  231. Tello, E., Martínez, J. L., Jover-Avellà, G., Olarieta, J. L., García-Ruiz, R., González de Molina, M. et al. (2017). The Onset of the English Agricultural Revolution: Climate Factors and Soil Nutrients. Journal of Interdisciplinary History, 47(4),  445–474. doi: 10.1162/JINH_a_01050.
  232. Tello, E., Valldeperas, E., Ollés, N., Marull, J., Coll, F., Warde, P., et al. (2014). Looking backwards into a Mediterranean edge environment: Landscape changes in El Congost Valley (Catalonia), 1850-2005. Environment and History, 20, 347–384. doi: 10.3197/096734014X14031694156402.CrossRefGoogle Scholar
  233. Theurl, M. C. (2016). Local food systems and their climate impacts: A life cycle perspective. In J. Niewöhner, A. Bruns, P. Hostert, T. Krueger, J.Ø. Nielsen, H. Haberl, C. Lauk, J. Lutz, D. Müller (Eds.), Land use competition. Ecological, economic and social perspectives (pp. 295–309). Cham (ZG): Springer International Publishing Switzerland.Google Scholar
  234. Theurl, M. C, & Schaffartzik, A. (2016). Method Précis: Life cycle assessment. In: H. Haberl, M. Fischer-Kowalski, F. Krausmann, & V. Winiwarter (Eds.), Social ecology: Society-nature relations across time and space (pp. 253–256). New York: Springer. doi: 10.1007/978-3-319-33326-7_10.
  235. Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America, 96, 5995–6000. doi: 10.1073/pnas.96.11.5995.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677. doi: 10.1038/nature01014.PubMedCrossRefGoogle Scholar
  237. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845. doi: 10.1126/science.1060391.PubMedCrossRefGoogle Scholar
  238. Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiveristy in grassland ecosystems. Nature, 379, 718–720. doi: 10.1038/379718a0.CrossRefGoogle Scholar
  239. Thompson, J., & Scoones, I. (2009). Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environmental Science & Policy, 12, 386–397. doi: 10.1016/j.envsci.2009.03.001.CrossRefGoogle Scholar
  240. Timmermann, C., & Robaey, Z. (2016). Agrobiodiversity under different property regimes. Journal of Agricultural and Environmental Ethics, 29, 285–303. doi: 10.1007/s10806-016-9602-2.CrossRefGoogle Scholar
  241. Toledo, V. M. (2002). Agroecología, sustentabilidad y reforma agraria: la superioridad de la pequeña producción familiar. Agroecologia e Desenvolvimento Rural Sustentável, 3(2), 27–36. Available at: http://www.pvnocampo.com.br/agroecologia/victor_toledo_escreve_sobre_agroecologia.pdf.
  242. Toledo, V. M., Ortiz-Espejel, B., Cortés, L., Moguel, P., Ordoñez, M. D. J. (2003). The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conservation Ecology, 7(3), 9. Available at: http://www.consecol.org/vol7/iss3/art9.
  243. Toledo, V. M., Stepp, J. R., Wyndham, F. S., Zarger, R. K. (2002). Ethnoecology: A conceptual framework for the study of indigenous knowledge of nature. In: Ethnobiology and biocultural diversity. In Proceedings of the 7th International Congress of Ethnobiology (pp. 511–522). Athens, Georgia, USA, October 2000. Georgia: University of Georgia Press.Google Scholar
  244. Toledo, V. M., & Barrera-Bassols, N. (2008). La memoria biocultural. La importancia ecológica de las sabidurías tradicionales. Icaria: Barcelona.Google Scholar
  245. Toledo, V. M., Barrera-Bassols, N., García Frapolli, E., & Alarcón Chaires, P. (2007). Manejo y uso de la biodiversidad entre los mayas yucatecos. CONABIO. Biodiversitas, 70, 10–15.Google Scholar
  246. Tress, B., Tress, G., Décamps, H., & d’Hauteserre, A. M. (2001). Bridging human and natural sciences in landscape research. Landscape Urban Planning, 57, 137–141. doi: 10.1016/S0169-2046(01)00199-2.CrossRefGoogle Scholar
  247. Tripp, R. (2008). Agricultural Change and low-input technology. In S. Snapp & B. Pound (Eds.), Agricultural systems: Agroecology and rural innovation for development (pp. 129–160). Amsterdam: Elsevier.Google Scholar
  248. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012a). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59. doi: 10.1016/j.biocon.2012.01.068.CrossRefGoogle Scholar
  249. Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters, 8, 857–874. doi: 10.1111/j.1461-0248.2005.00782.x.CrossRefGoogle Scholar
  250. Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahring, L., Batáry, P., et al. (2012b). Landscape moderation of biodiversity patterns and processes—eigth hypotheses. Biological Reviews, 87, 661–685. doi: 10.1111/j.1469-185X.2011.00216.x.
  251. Ulanowicz, R. U. (1986). Growth and development. Ecosystems phenomenology. Dordrecht: Springer.Google Scholar
  252. Ulanowicz, R. U. (2001). Information theory in ecology. Computers & Chemistry, 25, 393–399. doi: 10.1016/S0097-8485(01)00073-0.CrossRefGoogle Scholar
  253. Ulanowicz, R. U., Goerner, S. J., Lietaer, B., & Gomez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6, 27–36. doi: 10.1016/j.ecocom.2008.10.005UNEP.
  254. UNEP, (2016). Global Material Flows and Resource Productivity. An Assessment Study of the UNEP International Resource Panel. Paris: United Nations Environment Programme. Available at: http://unep.org/documents/irp/16-00169_LW_GlobalMaterialFlowsUNEReport_FINAL_160701.pdf. Accessed August 20, 2016.
  255. Van den Bergh, J. C. J. M., & Verbruggen, H. (1999). Spatial sustainability, trade and indicators: An evaluation of the ‘ecological footprint’. Ecological Economics, 29, 61–72. doi:  10.1016/S0921-8009(99)00032-4.
  256. Van der Ploeg, J. D. (2009). The New Peasantries. Struggles for autonomy and sustainability in an era of empire and globalization. London: Earthscan.Google Scholar
  257. Van der Ploeg, J. D. (2010). The food crisis, industrialized farming and the imperial regime. Journal of Agrarian Change, 10, 98–106. doi: 10.1111/j.1471-0366.2009.00251.x.
  258. Van der Ploeg, J. D. (2013). Peasants and the art of farming: A Chayanovian manifesto. Halifa: Fernwood.Google Scholar
  259. Vandermeer, J. (2000). Theoretical ecology meets agroecology: Towards an Ecological approach to agroecosystems. Ecology, 81, 1758–1759. doi: 10.1890/0012-9658(2000)081[1758:TEMATA]2.0.CO;2.CrossRefGoogle Scholar
  260. Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., & Matson, P. A. (1986). Human appropriation of the products of photosynthesis. BioScience, 36, 368–373. doi: 10.2307/1310258.CrossRefGoogle Scholar
  261. Wang, Y., & Lobstein, T. (2006). Worldwide trends in childhood overweight and obesity. International Journal of Pediatric Obesity, 1, 11–25. doi: 10.1080/17477160600586747.PubMedCrossRefGoogle Scholar
  262. Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L. W., Eggers, S., et al. (2011). Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 48, 570–579. doi: 10.1111/j.1365-2664.2010.01950.x.CrossRefGoogle Scholar
  263. World Health Organization. (2000a). Obesity: Preventing and managing the global epidemic. WHOTechnical Report Series 894. Geneva: World Health Organization.Google Scholar
  264. World Health Organization. (2000b). Nutrition for Health and Development. A global agenda for combating malnutrition. WHO Dist. General 00.6. Geneva: World Health Organization (WHO)/ Nutrition for Health and Development (NHD)/Sustainable Development and Healthy Environments (SDE).Google Scholar
  265. Wrbka, T., Erb, K. H., Schulz, N. B., Peterseil, J., Hahn, C., & Haberl, H. (2004). Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy, 21, 289–306. doi: 10.1016/j.landusepol.2003.10.012.CrossRefGoogle Scholar
  266. Young, T., & Burton, M.P. (1992). Agricultural sustainability: Definition and implications for agricultural and trade policy. Rome: FAO Economic and Social Development Paper 110.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Economic History, Faculty of Economics and BusinessInstitutions, Policy and World Economy, University of BarcelonaBarcelonaSpain
  2. 2.Agro-Ecosystems History LaboratoryPablo de Olavide UniveristySevilleSpain

Personalised recommendations