Skip to main content

An Overview of Computerized Adaptive Testing

  • Chapter
  • First Online:
Computerized Adaptive and Multistage Testing with R

Part of the book series: Use R! ((USE R))

Abstract

In this chapter, we present a brief overview of computerized adaptive testing theory, including test design, test assembly, item bank, item selection, scoring and equating, content balance, item exposure and security. We also provide a summary of the IRT-based item selection process with a list of the commonly used item selection methods, as well as a brief outline of the tree-based adaptive testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and non-compensatory multidimensional items. Applied Psychological Measurement, 13, 113–127. https://doi.org/10.1177/014662168901300201

    Article  Google Scholar 

  • Barrada, J. R., Mazuela, P., & Olea, J. (2006). Maximum information stratification method for controlling item exposure in computerized adaptive testing. Psicothema, 18, 156–159.

    Google Scholar 

  • Barrada, J. R., Olea, J., Ponsoda, V., & Abad, F. J. (2008). Incorporating randomness to the fisher information for improving item exposure control in cats. British Journal of Mathematical and Statistical Psychology, 61, 493–513. https://doi.org/10.1348/000711007X230937

    Article  MathSciNet  Google Scholar 

  • Barrada, J. R., Olea, J., Ponsoda, V., & Abad, F. J. (2009). Item selection rules in computerized adaptive testing: Accuracy and security. Methodology, 5, 7–17. https://doi.org/10.1027/1614-2241.5.1.7

    Article  Google Scholar 

  • Barrada, J. R., Olea, J., Ponsoda, V., & Abad, F. J. (2010). A method for the comparison of item selection rules in computerized adaptive testing. Applied Psychological Measurement, 34, 438–452. https://doi.org/10.1177/0146621610370152

    Article  Google Scholar 

  • Bejar, I. I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., & Revuelta, J. (2003). A feasibility study of on-the-fly item generation in adaptive testing. Journal of Technology, Learning, and Assessment, 2(3), 3–29.

    Google Scholar 

  • Belov, D. I., & Armstrong, R. D. (2009). Direct and inverse problems of item pool design for computerized adaptive testing. Educational and Psychological Measurement, 69, 533–547. https://doi.org/10.1177/0013164409332224

    Article  MathSciNet  Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Breiman, L., Friedman, L., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. New York: CRC Press.

    MATH  Google Scholar 

  • Chang, H.-H., & Ying, Z. (1996). A global information approach to computerized adaptive testing. Applied Psychological Measurement, 20, 213–229. https://doi.org/10.1177/014662169602000303

    Article  Google Scholar 

  • Chang, S., & Ansley, T. (2003). A comparative study of item exposure control methods in computerized adaptive testing. Journal of Educational Measurement, 40, 71–103. https://doi.org/10.1111/j.1745-3984.2003.tb01097.x

    Article  Google Scholar 

  • Cheng, Y., & Chang, H.-H. (2009). The maximum priority index method for severely constrained item selection in computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 62, 369–383. https://doi.org/10.1348/000711008X304376

    Article  MathSciNet  Google Scholar 

  • Cheng, Y., Chang, H.-H., Douglas, J., & Guo, F. (2009). Constraint-weighted a-stratification for computerized adaptive testing with nonstatistical constraints: Balancing measurement efficiency and exposure control. Educational and Psychological Measurement, 69, 35–49. https://doi.org/10.1177/0013164408322030

    Article  MathSciNet  Google Scholar 

  • Choi, S. W. (2009). FIRESTAR: Computerized adaptive testing simulation program for polytomous item response theory models. Applied Psychological Measurement, 33, 644–645. https://doi.org/10.1177/0146621608329892

    Article  Google Scholar 

  • Choi, S. W., & Swartz, R. J. (2009). Comparison of CAT item selection criteria for polytomous items. Applied Psychological Measurement, 32, 419–440. https://doi.org/10.1177/0013164408322030

    Article  MathSciNet  Google Scholar 

  • Davey, T., & Parshall, C. G. (1999). New algorithms for item selection and exposure control with computerized adaptive testing. Paper presented at the annual meeting of the American Educational Research Association.

    Google Scholar 

  • Dodd, B. G., De Ayala, R. J., & Koch, W. R. (1995). Computerized adaptive testing with polytomous items. Applied Psychological Measurement, 19, 5–22. https://doi.org/10.1177/014662169501900103

    Article  Google Scholar 

  • Eggen, T. J. H. M. (2010). Three-category adaptive classification testing. In W. V. der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 373–387). New York: Springer.

    Google Scholar 

  • Geerlings, H., Glas, C., & van der Linden, W. J. (2011). Modeling rule-based item generation. Psychometrika, 76, 337–359. https://doi.org/10.1007/s11336-011-9204-x

    Article  MathSciNet  MATH  Google Scholar 

  • Glas, C. A. W., & van der Linden, W. J. (2003). Computerized adaptive testing with item cloning. Applied Psychological Measurement, 27, 247–261. https://doi.org/10.1177/0146621603027004001

    Article  MathSciNet  Google Scholar 

  • Glas, C. A. W., & Vos, H. J. (2010). Adaptive mastery testing using a multidimensional IRT model. In W. V. der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 409–431). New York: Springer.

    Google Scholar 

  • Hetter, R. D., & Sympson, J. B. (1997). Item exposure control in CAT-ASVAB. In J. R. McBride (Ed.), Computerized adaptive testing: From inquiry to operation (pp. 141–144). Washington, D.C.: American Psychological Association.

    Chapter  Google Scholar 

  • Hsu, C.-L., Wang, W.-C., & Chen, S.-Y. (2013). Variable-length computerized adaptive testing based on cognitive diagnosis models. Applied Psychological Measurement, 37, 563–582. https://doi.org/10.1177/0146621613488642

    Article  Google Scholar 

  • Huitzing, H. A., Veldkamp, B. P., & Verschoor, A. J. (2005). Infeasibility in automated test assembly models: A comparison study of different methods. Journal of Educational Measurement, 42, 223–243. https://doi.org/10.1111/j.1745-3984.2005.00012.x

    Article  Google Scholar 

  • Irvine, S., & Kyllonen, P. (2002). Item generation for test development. Mahwah, NJ: Lawrence Erlbaum

    Google Scholar 

  • Kaplan, M., de la Torre, J., & Barrada, J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39, 167–188. https://doi.org/10.1177/0146621614554650

    Article  Google Scholar 

  • Kingsbury, G. G., & Zara, A. R. (1989). Procedures for selecting items for computerized adaptive tests. Applied Measurement in Education, 2, 359–375. https://doi.org/10.1207/s15324818ame0204\_6

    Article  Google Scholar 

  • Kingsbury, G. G., & Zara, A. R. (1991). A comparison of procedures for content-sensitive item selection in computerized adaptive tests. Applied Measurement in Education, 4, 241–261. https://doi.org/10.1207/s15324818ame0403\_4

    Article  Google Scholar 

  • Leung, C. K., Chang, H.-H., & Hau, K. T. (2003). Computerized adaptive testing: A comparison of three content balancing methods. The Journal of Technology, Learning and Assessment, 2, 1–15.

    Google Scholar 

  • Lewis, C., & Sheehan, K. (1990). Using Bayesian decision theory to design a computerized mastery test. Applied Psychological Measurement, 14, 367–386. https://doi.org/10.1177/014662169001400404

    Article  Google Scholar 

  • Lord, F. M. (1977). A broad-range tailored test of verbal ability. Applied Psychological Measurement, 1, 95–100. https://doi.org/10.1177/014662167700100115

    Article  Google Scholar 

  • Luecht, R. M. (1998). Computer-assisted test assembly using optimization heuristics. Applied Psychological Measurement, 22, 224–236. https://doi.org/10.1177/01466216980223003

    Article  Google Scholar 

  • Magis, D. (2013). A note on the item information function of the four-parameter logistic model. Applied Psychological Measurement, 37, 304–315. https://doi.org/10.1177/0146621613475471

    Article  Google Scholar 

  • Magis, D. (2015a). Empirical comparison of scoring rules at early stages of CAT. Paper presented at the Conference of the International Association for Computerized Adaptive Testing, Cambridge, UK.

    Google Scholar 

  • Magis, D. (2015b). A note on the equivalence between observed and expected information functions with polytomous IRT models. Journal of Educational and Behavioral Statistics, 40, 96–105. https://doi.org/10.3102/1076998614558122

    Article  Google Scholar 

  • Magis, D., & Barrada, J. R. (2017). Computerized adaptive testing with R: Recent updates of the package catR. Journal of Statistical Software, Code Snippets, 76(1), 1–19. https://doi.org/10.18637/jss.v076.c01

    Google Scholar 

  • Magis, D., & Raîche, G. (2012). Random generation of response patterns under computerized adaptive testing with the R package catR. Journal of Statistical Software, 48(8), 1–31. https://doi.org/10.18637/jss.v048.i08

    Article  Google Scholar 

  • Magis, D., & Verhelst, N. (2017). On the finiteness of the weighted likelihood estimator of ability. Psychometrika. https://doi.org/10.1007/s11336-016-9518-9

  • McBride, J. R., & Martin, J. T. (1983). Reliability and validity of adaptive ability tests in a military setting. In D. J. Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 224–236). New York: Academic Press.

    Google Scholar 

  • McClarty, K. L., Sperling, R. A., & Dodd, B. G. (2006). A variant of the progressive-restricted item exposure control procedure in computerized adaptive testing systems based on the 3PL and partial credit models. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.

    Google Scholar 

  • Mills, C. N., Potenza, M. T., Fremer, J. J., & Ward, W. C. (2002). Computer-based testing: Building the foundation for future assessments. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Parshall, C. G., Davey, T., & Nering, M. L. (1998). Test development exposure control for adaptive testing. Paper presented at the annual meeting of the National Council on Measurement in Education, San Diego, CA.

    Google Scholar 

  • Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Revuelta, J., & Ponsoda, V. (1998). A comparison of item exposure control methods in computerized adaptive testing. Journal of Educational Measurement, 35, 311–327. https://doi.org/10.1111/j.1745-3984.1998.tb00541.x

    Article  Google Scholar 

  • Riley, B. B., Dennis, M. L., & Conrad, K. J. (2010). A comparison of content-balancing procedures for estimating multiple clinical domains in computerized adaptive testing: Relative precision, validity, and detection of persons with misfitting responses. Applied Psychological Measurement, 34, 410–423. https://doi.org/10.1177/0146621609349802

    Article  Google Scholar 

  • Rulison, K., & Loken, E. (2009). I’ve fallen and I can’t get up: Can high-ability students recover from early mistakes in CAT? Applied Psychological Measurement, 33, 83–101. https://doi.org/10.1177/0146621608324023

    Article  MathSciNet  Google Scholar 

  • Samejima, F. (1977). A use of the information function in tailored testing. Applied Psychological Measurement, 1, 233–247. https://doi.org/10.1177/014662167700100209

    Article  Google Scholar 

  • Segall, D. O. (2004). A sharing item response theory model for computerized adaptive testing. Journal of Educational and Behavioral Statistics, 29, 439–460. https://doi.org/10.3102/10769986029004439

    Article  Google Scholar 

  • Segall, D. O. (2010). Principles of multidimensional adaptive testing. In W. V. der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 57–75). New York: Springer.

    Google Scholar 

  • Smith, R., & Lewis, C. (2014). Multistage testing for categorical decisions. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 189–203). New York: CRC Press.

    Google Scholar 

  • Stocking, M. L., & Lewis, C. (1998). Controlling item exposure conditional on ability in computerized adaptive testing. Journal of Educational and Behavioral Statistics, 23, 57–75. https://doi.org/10.3102/10769986023001057

    Article  Google Scholar 

  • Swanson, L., & Stocking, M. (1993). A model and heuristic for solving very large item selection problem. Applied Psychological Measurement, 17, 151–166. https://doi.org/10.1177/014662169301700205

    Article  Google Scholar 

  • Urry, V. W. (1970). A Monte Carlo investigation of logistic test models. Unpublished doctoral dissertation, Purdue University, West Lafayette, IN.

    Google Scholar 

  • van der Linden, W. J. (1998a). Bayesian item selection criteria for adaptive testing. Psychometrika, 63, 201–216. https://doi.org/10.1007/BF02294775

    Article  MathSciNet  MATH  Google Scholar 

  • van der Linden, W. J. (1998b). Optimal test assembly of psychological and educational tests. Applied Psychological Measurement, 22, 195–211. https://doi.org/10.1177/01466216980223001

    Article  Google Scholar 

  • van der Linden, W. J. (2000). Constrained adaptive testing with shadow tests. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 27–52). Norwell, MA: Kluwer.

    Chapter  Google Scholar 

  • van der Linden, W. J. (2005). A comparison of item-selection methods for adaptive tests with content constraints. Journal of Educational Measurement, 42, 283–302. https://doi.org/10.1111/j.1745-3984.2005.00015.x

    Article  Google Scholar 

  • van der Linden, W. J., Ariel, A., & Veldkamp, B. P. (2006). Assembling a computerized adaptive testing item pool as a set of linear tests. Journal of Educational and Behavioral Statistics, 31, 81–99. https://doi.org/10.3102/10769986031001081

    Article  Google Scholar 

  • van der Linden, W. J., & Diao, Q. (2014). Using a universal shadow test assembler with multistage testing. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 101–118). New York: CRC Press.

    Google Scholar 

  • van der Linden, W. J., & Glas, C. A. W. (2010). Elements of adaptive testing. New York: Springer.

    Book  MATH  Google Scholar 

  • van der Linden, W. J., & Guo, F. (2008). Bayesian procedures for identifying aberrant response-time patterns in adaptive testing. Psychometrika, 73, 365–384. https://doi.org/10.1007/s11336-007-9046-8

    Article  MathSciNet  MATH  Google Scholar 

  • van der Linden, W. J., & Pashley, P. J. (2000). Item selection and ability estimation in adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 1–25). Norwell, MA: Kluwer.

    Chapter  Google Scholar 

  • van der Linden, W. J., & Pashley, P. J. (2010). Item selection and ability estimation in adaptive testing. In W. V. der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 3–30). New York: Springer.

    Chapter  Google Scholar 

  • van der Linden, W. J., Veldkamp, B. P., & Reese, L. M. (2000). An integer programming approach to item bank design. Applied Psychological Measurement, 24, 139–150. https://doi.org/10.1177/01466210022031570

    Article  Google Scholar 

  • Veerkamp, W. J. J., & Berger, M. P. F. (1997). Some new item selection criteria for adaptive testing. Journal of Educational and Behavioral Statistics, 22, 203–226. https://doi.org/10.3102/10769986022002203

    Article  Google Scholar 

  • Veldkamp, B. P. (2014). Item pool design and maintenance for multistage testing. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 39–54). New York: CRC Press.

    Google Scholar 

  • Veldkamp, B. P., & van der Linden, W. J. (2010). Designing item pools for adaptive testing. In W. V. der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 231–245). New York: Springer.

    Google Scholar 

  • Wainer, H. (2000). Computerized adaptive testing: A primer (2nd ed.). New York: Routledge/Taylor and Francis.

    Google Scholar 

  • Wang, C. (2013). Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length. Educational and Psychological Measurement, 73, 1017–1035. https://doi.org/10.1177/0013164413498256

    Article  Google Scholar 

  • Wang, C., Chang, H.-H., & Huebner, A. (2011). Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 48, 255–273. https://doi.org/10.1111/j.1745-3984.2011.00145.x

    Article  Google Scholar 

  • Weiss, D. J. (1983). New horizons in testing: Latent trait theory and computerized adaptive testing. New York: Academic Press.

    Google Scholar 

  • Weissman, A. (2014). IRT-based multistage testing. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 153–168). New York: CRC Press.

    Google Scholar 

  • Yan, D., Lewis, C., & Stocking, M. L. (2004). Adaptive testing with regression trees in the presence of multidimensionality. Journal of Educational and Behavioral Statistics, 29, 293–316. https://doi.org/10.3102/10769986029003293

    Article  Google Scholar 

  • Yan, D., Lewis, C., & von Davier, A. A. (2014b). A tree-based approach for multistage testing. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 169–188). New York: CRC Press.

    Google Scholar 

  • Yan, D., von Davier, A. A., & Lewis, C. (2014). Computerized multistage testing: Theory and applications. New York: CRC Press.

    Google Scholar 

  • Zheng, Y., Wang, C., Culbertson, M., & Chang, H.-H. (2014). Overview of test assembly methods in multistage testing. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 87–99). New York: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magis, D., Yan, D., von Davier, A.A. (2017). An Overview of Computerized Adaptive Testing. In: Computerized Adaptive and Multistage Testing with R. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-69218-0_3

Download citation

Publish with us

Policies and ethics