Skip to main content

Sustainable Logistics Network Design Under Uncertainty

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 129))

Abstract

This chapter mainly discusses the mathematical programming models and methods used to design sustainable logistics networks (SLN) under epistemic uncertainty. Firstly, the relevant concepts and definitions are described and analyzed. Thereafter, a systemic review and analysis of the recent literature is provided to explore the most attractive research avenues in this area. A comprehensive description is given on environmental and social impact assessment methods in order to facilitate the quantification of environmental and social burden in the mathematical decision models. Two selected mathematical programming models for SLN design problem under uncertain data are provided and explained in detail to support quantitative decision-making in this area. Finally, a real industrial case study is described and investigated to show the applicability of the previously discussed mathematical programming methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azadeh, A., Raoofi, Z., Zarrin, M.: A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach. J. Nat. Gas Sci. Eng. 26, 702–710 (2015)

    Article  Google Scholar 

  2. Babazadeh, R., Razmi, J., Pishvaee, M.S., Rabbani, M.: A sustainable second-generation biodiesel supply chain network design problem under risk. Omega. 66, 258 (2016)

    Article  Google Scholar 

  3. Bare, J.: TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Techn. Environ. Policy. 13(5), 687–696 (2011)

    Article  Google Scholar 

  4. Benoît, C., Mazijn, B.: Guidelines for Social Life Cycle Assessment of Products. UNEP/SETAC Life Cycle Initiative (2009)

    Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press (2009)

    Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brand, G., Braunschweig, A., Scheidegger, A., Schwank, O.: 1998. Weighting in Ecobalances with the ecoscarcity method–Ecofactors 1997. BUWAL (SAFEL) Environment Series, 297

    Google Scholar 

  9. Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S.: Quantitative models for sustainable supply chain management: developments and directions. Eur. J. Oper. Res. 233(2), 299–312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardoso, S.R., Barbosa-Póvoa, A.P.F., Relvas, S.: Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. Eur. J. Oper. Res. 226(3), 436–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carter, C.R., Jennings, M.M.: Social responsibility and supply chain relationships. Transp. Res. E: Logist. Transp. Rev. 38(1), 37–52 (2002)

    Article  Google Scholar 

  13. Carter, C.R., Rogers, D.S.: A framework of sustainable supply chain management: moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. 38(5), 360–387 (2008)

    Article  Google Scholar 

  14. Chaabane, A., Ramudhin, A., Paquet, M.: Design of sustainable supply chains under the emission trading scheme. Int. J. Prod. Econ. 135(1), 37–49 (2012)

    Article  Google Scholar 

  15. Cruz, J.M.: The impact of corporate social responsibility in supply chain management: multicriteria decision-making approach. Decis. Support. Syst. 48(1), 224–236 (2009)

    Article  Google Scholar 

  16. Cruz, J.M., Wakolbinger, T.: Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs, emissions, and risk. Int. J. Prod. Econ. 116(1), 61–74 (2008)

    Article  Google Scholar 

  17. Daghigh, R., Jabalameli, M., Amiri, A., Pishvaee, M.: A multi-objective location-inventory model for 3PL providers with sustainable considerations under uncertainty. Int. J. Ind. Eng. Comput. 7(4), 615–634 (2016)

    Google Scholar 

  18. Dehghanian, F., Mansour, S.: Designing sustainable recovery network of end-of-life products using genetic algorithm. Resour. Conserv. Recycl. 53(10), 559–570 (2009)

    Article  Google Scholar 

  19. De Rosa, V., Gebhard, M., Hartmann, E., Wollenweber, J.: Robust sustainable bi-directional logistics network design under uncertainty. Int. J. Prod. Econ. 145(1), 184–198 (2013)

    Article  Google Scholar 

  20. Devika, K., Jafarian, A., Nourbakhsh, V.: Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison of metaheuristics hybridization techniques. Eur. J. Oper. Res. 235(3), 594–615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147(2), 231–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ehrgott, M.: Multicriteria optimization. Springer Science & Business Media (2006)

    Google Scholar 

  23. ETI.: 2009. The Base Code. <http://www.ethicaltrade.org/resources/key-eti-resources/eti-base-code>

  24. Ferretti, I., Zanoni, S., Zavanella, L., Diana, A.: Greening the aluminium supply chain. Int. J. Prod. Econ. 108(1), 236–245 (2007)

    Article  Google Scholar 

  25. FLA.: 2011. Workplace Code of Conduct. <http://www.fairlabor.org>

  26. Fleischmann, M., Van Nunen, J.A., Gräve, B.: Integrating closed-loop supply chains and spare-parts management at IBM. Interfaces. 33(6), 44–56 (2003)

    Article  Google Scholar 

  27. Fonseca, M.C., García-Sánchez, Á., Ortega-Mier, M., Saldanha-da-Gama, F.: A stochastic bi-objective location model for strategic reverse logistics. TOP. 18(1), 158–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., van Zelm, R.: ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, (2009)

    Google Scholar 

  29. Goedkoop, M., Spriensma, R.: 2000. The eco-indicator 99: a damage oriented method for life cycle impact assessment-methodology report (available at www. pre. nl)

    Google Scholar 

  30. Goetschalcks, M., Fleischmann, B.: Strategic network design, pp. 117–132. Supply Chain Management and Advanced Planning (2008)

    Google Scholar 

  31. Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K.: Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int. J. Prod. Econ. 152, 9–28 (2014)

    Article  Google Scholar 

  32. Govindan, K., Jafarian, A., Nourbakhsh, V.: Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Comput. Oper. Res. 62, 112–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. GRI.: Sustainability Reporting Guidelines, version 3.1 (2011)

    Google Scholar 

  34. Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, H.: Life cycle assessment; an operational guide to the ISO standards; parts 1 and 2. In: Ministry of Housing, Spatial Planning and Environment (VROM) and centre of Environmental Science (CML). Den Haag and Leiden, Dordrecht (2001)

    Google Scholar 

  35. Hassini, E., Surti, C., Searcy, C.: A literature review and a case study of sustainable supply chains with a focus on metrics. Int. J. Prod. Econ. 140(1), 69–82 (2012)

    Article  Google Scholar 

  36. Hauschild, M. and Potting, J., 2005. Spatial differentiation in life cycle impact assessment: the EDIP2003 methodology. Environmental news, (80)

    Google Scholar 

  37. Hugo, A., Pistikopoulos, E.N.: Environmentally conscious long-range planning and design of supply chain networks. J. Clean. Prod. 13(15), 1471–1491 (2005)

    Article  Google Scholar 

  38. Hwang, C.L., Masud, A.S.M.: Multiple objective decision making—methods and applications: a state-of-the-art survey, vol. 164. Springer Science & Business Media (2012)

    Google Scholar 

  39. ISO.: 2010. Final Draft International Standard ISO/FDIS 26000:2010(E), Guidance on Social Responsibility

    Google Scholar 

  40. Inuiguchi, M., Ramık, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111(1), 3–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jayaraman, V.: Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach. Int. J. Prod. Res. 44(5), 981–998 (2006)

    Article  MATH  Google Scholar 

  42. Jayaraman, V., Guide Jr., V.D.R., Srivastava, R.: A closed-loop logistics model for remanufacturing. J. Oper. Res. Soc. 50(5), 497–508 (1999)

    Article  MATH  Google Scholar 

  43. Jiménez, M.: Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 4(04), 379–388 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R.: IMPACT 2002+: a new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8(6), 324–330 (2003)

    Article  Google Scholar 

  45. Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)

    Article  MATH  Google Scholar 

  46. Luo, Y., Zhou, M., Caudill, R.J.: An integrated e-supply chain model for agile and environmentally conscious manufacturing. IEEE/ASME Trans. Mechatron. 6(4), 377–386 (2001)

    Article  Google Scholar 

  47. Mohammadi, M., Torabi, S.A., Tavakkoli-Moghaddam, R.: Sustainable hub location under mixed uncertainty. Transp. Res. E Logist. Transp. Rev. 62, 89–115 (2014)

    Article  Google Scholar 

  48. Mota, B., Gomes, M.I., Carvalho, A., Barbosa-Povoa, A.P.: Towards supply chain sustainability: economic, environmental and social design and planning. J. Clean. Prod. 105, 14–27 (2015)

    Article  Google Scholar 

  49. Mula, J., Poler, R., Garcia, J.P.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157(1), 74–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pishvaee, M.S., Farahani, R.Z., Dullaert, W.: A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput. Oper. Res. 37(6), 1100–1112 (2010a)

    Article  MATH  Google Scholar 

  52. Pishvaee, M.S., Jolai, F., Razmi, J.: A stochastic optimization model for integrated forward/reverse logistics network design. J. Manuf. Syst. 28(4), 107–114 (2009)

    Article  Google Scholar 

  53. Pishvaee, M.S., Kianfar, K., Karimi, B.: Reverse logistics network design using simulated annealing. Int. J. Adv. Manuf. Technol. 47(1–4), 269–281 (2010b)

    Article  Google Scholar 

  54. Pishvaee, M.S., Razmi, J.: Environmental supply chain network design using multi-objective fuzzy mathematical programming. Appl. Math. Model. 36(8), 3433–3446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Pishvaee, M.S., Razmi, J., Torabi, S.A.: An accelerated benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain. Transp. Res. E Logist. Transp. Rev. 67, 14–38 (2014)

    Article  Google Scholar 

  56. Pishvaee, M.S., Razmi, J., Torabi, S.A.: Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206, 1–20 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161(20), 2668–2683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pishvaee, M.S., Torabi, S.A., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62(2), 624–632 (2012b)

    Article  Google Scholar 

  59. Ramezani, M., Kimiagari, A.M., Karimi, B., Hejazi, T.H.: Closed-loop supply chain network design under a fuzzy environment. Knowl.-Based Syst. 59, 108–120 (2014)

    Article  Google Scholar 

  60. Ramudhin, A., Chaabane, A., Kharoune, M., Paquet, M.: Carbon market sensitive green supply chain network design. In: 2008 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1093–1097. IEEE (2008)

    Google Scholar 

  61. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.P., Suh, S., Weidema, B.P., Pennington, D.W.: Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30(5), 701–720 (2004)

    Article  Google Scholar 

  62. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28(6), 971–983 (2004)

    Article  Google Scholar 

  63. SAI: Social Accountability 8000 (SA8000), International Standard. SAI, New York (2008)

    Google Scholar 

  64. Sazvar, Z., Mirzapour Al-e-hashem, S.M.J., Baboli, A., Jokar, M.A.: A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. Int. J. Prod. Econ. 150, 140–154 (2014)

    Article  Google Scholar 

  65. Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008)

    Article  Google Scholar 

  66. Seuring, S.: A review of modeling approaches for sustainable supply chain management. Decis. Support. Syst. 54(4), 1513–1520 (2013)

    Article  Google Scholar 

  67. Sheu, J.B.: Green supply chain management, reverse logistics and nuclear power generation. Transp. Res. E Logist. Transp. Rev. 44(1), 19–46 (2008)

    Article  Google Scholar 

  68. Sheu, J.B., Chou, Y.H., Hu, C.C.: An integrated logistics operational model for green-supply chain management. Transp. Res. E Logist. Transp. Rev. 41(4), 287–313 (2005)

    Article  Google Scholar 

  69. Soyster, A.L.: Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  70. Steen, B.: A systematic approach to environmental priority strategies in product development (EPS): version 2000-general system characteristics, p. 4. Centre for Environmental Assessment of Products and Material Systems, Gothenburg (1999)

    Google Scholar 

  71. Sustainability Assessment and Reporting for the University of Michigan's Ann Arbor Campus, Report No. CSS02–04,.: (2002). Available from: http://css.snre.umich.edu/css_doc/CSS02-04.pdf

  72. Talaei, M., Moghaddam, B.F., Pishvaee, M.S., Bozorgi-Amiri, A., Gholamnejad, S.: A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. J. Clean. Prod. 113, 662–673 (2016)

    Article  Google Scholar 

  73. Tang, C.S., Zhou, S.: Research advances in environmentally and socially sustainable operations. Eur. J. Oper. Res. 223(3), 585–594 (2012)

    Article  Google Scholar 

  74. Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Tseng, S.C., Hung, S.W.: A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management. J. Environ. Manag. 133, 315–322 (2014)

    Article  Google Scholar 

  76. UNGC.: 2007. An Inspirational Guide to Implementing the Global Compact. <http://www.unglobalcompact.org/>

  77. Ülkü, M.A.: Dare to care: shipment consolidation reduces not only costs, but also environmental damage. Int. J. Prod. Econ. 139(2), 438–446 (2012)

    Article  Google Scholar 

  78. WCED: Our Common Future. Oxford University Press, Oxford/New York (1987)

    Google Scholar 

  79. World Business Council for Sustainable Development: Corporate Social Responsibility: Meeting Changing Expectations. World Business Council for Sustainable Development (1999)

    Google Scholar 

  80. Zhang, P., Zhang, W.G.: Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets Syst. 255, 74–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhang, S., Lee, C.K.M., Wu, K., Choy, K.L.: Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert Syst. Appl. 65, 87–99 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozita Daghigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daghigh, R., Pishvaee, M.S., Torabi, S.A. (2017). Sustainable Logistics Network Design Under Uncertainty. In: Cinar, D., Gakis, K., Pardalos, P. (eds) Sustainable Logistics and Transportation. Springer Optimization and Its Applications, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-69215-9_6

Download citation

Publish with us

Policies and ethics