Advertisement

Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment

  • Evangelia Andreopoulou
  • Asterios Arampatzis
  • Melina Patsoni
  • Ilias KazanisEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1041)

Abstract

The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.

Keywords

Neural stem cell Development Evolution Extracellular matrix Vasculature Cancer 

Notes

Acknowledgements

IK was supported by funding from Action Medical Research, UK (GN2291). The authors would like to thank Ms. Kassandra- Danai Meri for providing the original image in Fig. 6.1e.

References

  1. Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, Gotoh Y et al (2007) Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25:2827–2836. https://doi.org/10.1634/stemcells.2007-0177 PubMedCrossRefGoogle Scholar
  2. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596. https://doi.org/10.1016/j.neuron.2011.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A (2008) Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26:798–809. https://doi.org/10.1634/stemcells.2007-0448 PubMedCrossRefGoogle Scholar
  4. Alfonso J, Le Magueresse C, Zuccotti A, Khodosevich K, Monyer H (2012) Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. Cell Stem Cell 10:76–87. https://doi.org/10.1016/j.stem.2011.11.011 PubMedCrossRefGoogle Scholar
  5. Alifragis P, Liapi A, Parnavelas JG (2004) Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24:5643–5648. https://doi.org/10.1523/JNEUROSCI.1245-04.2004 PubMedCrossRefGoogle Scholar
  6. Alvarado AG, Turaga SM, Sathyan P, Mulkearns-Hubert EE, Otvos B, Silver DJ et al (2016) Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro Oncol. https://doi.org/10.1093/neuonc/nov196
  7. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293. https://doi.org/10.1038/35067582. PubMedCrossRefGoogle Scholar
  8. Andreu-Agulló C, Morante-Redolat JM, Delgado AC, Fariñas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12:1514–1523. https://doi.org/10.1038/nn.2437 PubMedCrossRefGoogle Scholar
  9. Androutsellis-Theotokis A, Rueger MA, Park DM, Boyd JD, Padmanabhan R, Campanati L et al (2010) Angiogenic factors stimulate growth of adult neural stem cells. PLoS One 5:e9414. https://doi.org/10.1371/journal.pone.0009414 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA et al (2010) TGF-β receptor inhibitors target the CD44high/Id1 high glioma-initiating cell population in human glioblastoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2010.10.023
  11. Anton ES, Kreidberg JA, Rakic P (1999) Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22:277–289PubMedCrossRefGoogle Scholar
  12. Astic L, Pellier-Monnin V, Saucier D, Charrier C, Mehlen P (2002) Expression of netrin-1 and netrin-1 receptor, DCC, in the rat olfactory nerve pathway during development and axonal regeneration. Neuroscience 109:643–656PubMedCrossRefGoogle Scholar
  13. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-06-1010
  14. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502. https://doi.org/10.2353/ajpath.2010.091021 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barnabé-Heider F, Wasylnka JA, Fernandes KJL, Porsche C, Sendtner M, Kaplan DR et al (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265. https://doi.org/10.1016/j.neuron.2005.08.037 PubMedCrossRefGoogle Scholar
  16. Basak O, Giachino C, Fiorini E, MacDonald HR, Taylor V (2012) Neurogenic subventricular zone stem/progenitor cells are notch1-dependent in their active but Not quiescent state. J Neurosci 32:5654–5666. https://doi.org/10.1523/JNEUROSCI.0455-12.2012 PubMedCrossRefGoogle Scholar
  17. Batailler M, Derouet L, Butruille L, Migaud M (2016) Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct 221:3301–3314. https://doi.org/10.1007/s00429-015-1101-0 PubMedCrossRefGoogle Scholar
  18. Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, et al (2016) Exosomes as novel regulators of adult neurogenic niches. 9, 1–28. doi:https://doi.org/10.3389/fncel.2015.00501.
  19. Behrem S, Zarković K, Eskinja N, Jonjić N (2005) Distribution pattern of tenascin-C in glioblastoma: correlation with angiogenesis and tumor cell proliferation. Pathol Oncol Res. doi:PAOR.2005.11.4.0229Google Scholar
  20. Belsham DD, Fick LJ, Dalvi PS, Centeno M-L, Chalmers JA, Lee PKP et al (2009) Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J 23:4256–4265. https://doi.org/10.1096/fj.09-133454 PubMedCrossRefGoogle Scholar
  21. Belvindrah R, Graus-Porta D, Goebbels S, Nave K-A, Muller U (2007a) Beta 1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex. J Neurosci 27:13854–13865. https://doi.org/10.1523/JNEUROSCI.4494-07.2007 PubMedCrossRefGoogle Scholar
  22. Belvindrah R, Hankel S, Walker J, Patton BL, Müller U (2007b) β1 Integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27:2704–2717. https://doi.org/10.1523/jneurosci.2991-06.2007 PubMedCrossRefGoogle Scholar
  23. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537PubMedCrossRefGoogle Scholar
  24. Bonaguidi MA, Peng C-Y, McGuire T, Falciglia G, Gobeske KT, Czeisler C et al (2008) Noggin expands neural stem cells in the adult hippocampus. J Neurosci 28:9194–9204. https://doi.org/10.1523/JNEUROSCI.3314-07.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bond AM, Peng C-Y, Meyers EA, McGuire T, Ewaleifoh O, Kessler JA (2014) BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage. Stem Cells 32:2201–2214. https://doi.org/10.1002/stem.1688 PubMedCrossRefGoogle Scholar
  26. Borrell V, Calegari F (2014) Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length. Neurosci Res. https://doi.org/10.1016/j.neures.2014.04.004
  27. Bovetti S, Bovolin P, Perroteau I, Puche AC (2007a) Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25:2021–2033. https://doi.org/10.1111/j.1460-9568.2007.05441.x PubMedCrossRefGoogle Scholar
  28. Bovetti S, Hsieh Y-C, Bovolin P, Perroteau I, Kazunori T, Puche AC (2007b) Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci 27:5976–5980. https://doi.org/10.1523/JNEUROSCI.0678-07.2007 PubMedCrossRefGoogle Scholar
  29. Brooker SM, Bond AM, Peng C-Y, Kessler JA (2016) β1-integrin restricts astrocytic differentiation of adult hippocampal neural stem cells. Glia 64:1235–1251. https://doi.org/10.1002/glia.22996 PubMedCrossRefGoogle Scholar
  30. Brösicke N, Van Landeghem FKH, Scheffler B, Faissner A (2013) Tenascin-C is expressed by human glioma in vivo and shows a strong association with tumor blood vessels. Cell Tissue Res 354(2):409–430PubMedCrossRefGoogle Scholar
  31. Bulstrode H, Jones LM, Siney EJ, Sampson JM, Ludwig A, Gray WP et al (2012) A-Disintegrin and Metalloprotease (ADAM) 10 and 17 promote self-renewal of brain tumor sphere forming cells. Cancer Lett. https://doi.org/10.1016/j.canlet.2012.07.022
  32. Burgett ME, Lathia JD, Roth P, Nowacki AS, Galileo DS, Pugacheva E et al (2016) Direct contact with perivascular tumor cells enhances integrin avβ3 signaling and migration of endothelial cells. Oncotarget 7:43852–43867PubMedPubMedCentralCrossRefGoogle Scholar
  33. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.11.020
  34. Cameron RS, Rakic P (1994) Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J Neurosci 14:3139–3155PubMedGoogle Scholar
  35. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M et al (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112:15672–15677. https://doi.org/10.1073/pnas.1520760112. PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cayre M, Courtès S, Martineau F, Giordano M, Arnaud K, Zamaron A et al (2013) Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination. Development 140:3107–3117. https://doi.org/10.1242/dev.092999 PubMedCrossRefGoogle Scholar
  37. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2010.01.001
  38. Chatzi C, Schnell E, Westbrook GL (2015) Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells. Elife 4:e08722. https://doi.org/10.7554/eLife.08722. PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chieffi S, Messina G, Villano I, Messina A, Esposito M, Monda V et al (2017) Exercise influence on hippocampal function: possible involvement of orexin-A. Front Physiol 8:85. https://doi.org/10.3389/fphys.2017.00085 PubMedPubMedCentralGoogle Scholar
  40. Chung H, Park S (2016) Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells. J Endocrinol 230:239–250. https://doi.org/10.1530/JOE-16-0126 PubMedCrossRefGoogle Scholar
  41. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H et al (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663PubMedCrossRefGoogle Scholar
  42. Coma S, Shimizu A, Klagsbrun M (2011) Hypoxia induces tumor and endothelial cell migration in a semaphorin 3F- and VEGF-dependent manner via transcriptional repression of their common receptor neuropilin 2. Cell Adhes Migr 5:266–275CrossRefGoogle Scholar
  43. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A (2000) Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3:1091–1097. https://doi.org/10.1038/80606. PubMedCrossRefGoogle Scholar
  44. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D et al (2014) Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56:193–204. https://doi.org/10.1016/j.molcel.2014.08.020 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Courtès S, Vernerey J, Pujadas L, Magalon K, Cremer H, Soriano E et al (2011) Reelin controls progenitor cell migration in the healthy and pathological adult mouse brain. PLoS One 6:e20430. https://doi.org/10.1371/journal.pone.0020430 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Culver JC, Vadakkan TJ, Dickinson ME (2013) A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 8:e53546. https://doi.org/10.1371/journal.pone.0053546 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Curtis MA, Eriksson PS, Faull RL (2007) Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol 34:528–532. https://doi.org/10.1111/j.1440-1681.2007.04609.x PubMedCrossRefGoogle Scholar
  48. D’Ercole J a, Ye P, O’Kusky JR (2002) Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36:209–220. https://doi.org/10.1054/npep.2002.0893 PubMedCrossRefGoogle Scholar
  49. Darsalia V, Heldmann U, Lindvall O, Kokaia Z (2005) Stroke-induced neurogenesis in aged brain. Stroke 36:1790–1795PubMedCrossRefGoogle Scholar
  50. Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26:605–614PubMedCrossRefGoogle Scholar
  51. David LS, Schachner M, Saghatelyan A (2013) The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. J Neurosci 33:10324–10339. https://doi.org/10.1523/JNEUROSCI.5728-12.2013 PubMedCrossRefGoogle Scholar
  52. Daynac M, Tirou L, Faure H, Mouthon M-A, Gauthier LR, Hahn H et al (2016) Hedgehog controls quiescence and activation of neural stem cells in the adult ventricular-subventricular zone. Stem cell reports 7:735–748. https://doi.org/10.1016/j.stemcr.2016.08.016 PubMedPubMedCentralCrossRefGoogle Scholar
  53. De Juan Romero C, Bruder C, Tomasello U, Sanz-Anquela JM, Borrell V (2015) Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J 34:1859–1874.  10.15252/embj.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H et al (2011) Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain. https://doi.org/10.1093/brain/awr081
  55. Delgado AC, Ferrón SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83:572–585. https://doi.org/10.1016/j.neuron.2014.06.015 PubMedCrossRefGoogle Scholar
  56. Dieriks BV, Waldvogel HJ, Monzo HJ, Faull RLM, Curtis MA (2013) GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone. J Chem Neuroanat 52:58–68. https://doi.org/10.1016/j.jchemneu.2013.06.001 PubMedCrossRefGoogle Scholar
  57. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96:11619–11624PubMedPubMedCentralCrossRefGoogle Scholar
  58. Douet V, Kerever A, Arikawa-Hirasawa E, Mercier F (2013) Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 46:137–145. https://doi.org/10.1111/cpr.12023 PubMedCrossRefGoogle Scholar
  59. Draganova K, Zemke M, Zurkirchen L, Valenta T, Cantù C, Okoniewski M et al (2015) Wnt/β-Catenin signaling regulates sequential fate decisions of murine cortical precursor cells. Stem Cells 33:170–182. https://doi.org/10.1002/stem.1820 PubMedCrossRefGoogle Scholar
  60. Ekonomou A, Ballard CG, Pathmanaban ON, Perry RH, Perry EK, Kalaria RN et al (2010) Increased neural progenitors in vascular dementia. Neurobiol Aging 32(12):2152–2161PubMedCrossRefGoogle Scholar
  61. Etxeberria A, Mangin J-M, Aguirre A, Gallo V (2010) Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13:287–289. https://doi.org/10.1038/nn.2500 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL et al (2011) Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell. https://doi.org/10.1016/j.cell.2011.06.006
  63. Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andang M, Ernfors P (2011) Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci 108:5837–5842. https://doi.org/10.1073/pnas.1014993108 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N, Schröder R et al (2012) Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci U S A 109:11836–11841. https://doi.org/10.1073/pnas.1209647109 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E et al (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347:1465–1470. https://doi.org/10.1126/science.aaa1975 PubMedCrossRefGoogle Scholar
  66. Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z et al (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-0167
  67. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155. https://doi.org/10.1038/nn.4476 PubMedCrossRefGoogle Scholar
  68. Fusco S, Leone L, Barbati SA, Samengo D, Piacentini R, Maulucci G et al (2016) A CREB-Sirt1-Hes1 circuitry mediates neural stem cell response to glucose availability. Cell Rep 14:1195–1205. https://doi.org/10.1016/j.celrep.2015.12.092 PubMedCrossRefGoogle Scholar
  69. Gajera CR1, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, Bachmann S, Christensen EI, Götz M, Kempermann G, Peterson AS, Willnow TE, Hammes A. (2010) LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci 123:192219–192230. doi: 10.1242/jcs.065912
  70. García-González D, Murcia-Belmonte V, Esteban PF, Ortega F, Díaz D, Sánchez-Vera I et al (2016) Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct Funct 221:239–260. https://doi.org/10.1007/s00429-014-0904-8 PubMedCrossRefGoogle Scholar
  71. Garcion E, Halilagic A, Faissner A, Ffrench-Constant C (2004) Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131:3423–3432. https://doi.org/10.1242/dev.01202 PubMedCrossRefGoogle Scholar
  72. Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM et al (2013) Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the notch pathway. J Biol Chem. https://doi.org/10.1074/jbc.M113.477950
  73. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736. https://doi.org/10.1038/nrc2246 PubMedCrossRefGoogle Scholar
  74. Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C et al (2012) Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A 109:1317–1322. https://doi.org/10.1073/pnas.1016199109 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z et al (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367–379PubMedCrossRefGoogle Scholar
  76. Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E et al (2013) Fgf10-Expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180. https://doi.org/10.1523/JNEUROSCI.2437-12.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Haddock G, Cross AK, Allan S, Sharrack B, Callaghan J, Bunning RAD et al (2007) Brevican and phosphacan expression and localization following transient middle cerebral artery occlusion in the rat. Biochem Soc Trans 35:692–694. https://doi.org/10.1042/BST0350692. PubMedCrossRefGoogle Scholar
  78. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. https://doi.org/10.1101/gad.1627008
  79. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al (2012) Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520. https://doi.org/10.1084/jem.20111424 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353. https://doi.org/10.1016/j.stem.2012.12.015 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hartenstein V, Wodarz A. (2013) Initial neurogenesis in Drosophila. Wiley Interdiscip Rev Dev Biol 2:701–721. doi: 10.1002/wdev.111Google Scholar
  82. Harper MM, Ye E-A, Blong CC, Jacobson ML, Sakaguchi DS (2010) Integrins contribute to initial morphological development and process outgrowth in rat adult hippocampal progenitor cells. J Mol Neurosci 40:269–283. https://doi.org/10.1007/s12031-009-9211-x PubMedCrossRefGoogle Scholar
  83. Hartenstein V, Stollewerk A (2015) Review the evolution of early neurogenesis. Dev Cell 32:390–407. https://doi.org/10.1016/j.devcel.2015.02.004.PubMedCrossRefGoogle Scholar
  84. Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Götz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133:3245–3254. https://doi.org/10.1242/dev.02486 PubMedCrossRefGoogle Scholar
  85. He Z, Ding J, Zhang J, Liu Y, Gong C, Sun S et al (2012) Fibroblast growth factor-2 counteracts the effect of ciliary neurotrophic factor on spontaneous differentiation in adult hippocampal progenitor cells. J Huazhong Univ Sci Technolog Med Sci 32:867–871. https://doi.org/10.1007/s11596-012-1049-8 PubMedCrossRefGoogle Scholar
  86. Heberden C (2016) Modulating adult neurogenesis through dietary interventions. Nutr Res Rev 29:163–171. https://doi.org/10.1017/S0954422416000081 PubMedCrossRefGoogle Scholar
  87. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. https://doi.org/10.4161/cc.8.20.9701
  88. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. https://doi.org/10.1073/pnas.1010529108 PubMedCentralCrossRefGoogle Scholar
  89. Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci U S A 109(Suppl):10661–10668. https://doi.org/10.1073/pnas.1201895109 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hirata E, Arakawa Y, Shirahata M, Yamaguchi M, Kishi Y, Okada T et al (2009) Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue. Cancer Sci. https://doi.org/10.1111/j.1349-7006.2009.01189.x
  91. Holmberg J, Armulik A, Senti K-A, Edoff K, Spalding K, Momma S et al (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19:462–471. https://doi.org/10.1101/gad.326905 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. https://doi.org/10.1002/stem.429
  93. Huang P, Rani MRS, Ahluwalia MS, Bae E, Prayson RA, Weil RJ et al (2012) Endothelial expression of TNF receptor-1 generates a proapoptotic signal inhibited by integrinα6β1 in glioblastoma. Cancer Res 72:1428–1437. https://doi.org/10.1158/0008-5472.CAN-11-2621 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ikeda M, Hirota Y, Sakaguchi M, Yamada O, Kida YS, Ogura T et al (2010) Expression and proliferation-promoting role of Diversin in the neuronally committed precursor cells migrating in the adult mouse brain. Stem Cells 28:2017–2026. https://doi.org/10.1002/stem.516 PubMedCrossRefGoogle Scholar
  95. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30:3489–3498. https://doi.org/10.1523/JNEUROSCI.4987-09.2010 PubMedCrossRefGoogle Scholar
  96. Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521PubMedCrossRefGoogle Scholar
  97. Iwashita M, Kataoka N, Toida K, Kosodo Y (2014) Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development 141:3793–3798. https://doi.org/10.1242/dev.109637 PubMedCrossRefGoogle Scholar
  98. Jagielska A, Norman AL, Whyte G, Vliet KJV, Guck J, Franklin RJM (2012) Mechanical environment modulates biological properties of oligodendrocyte progenitor cells. Stem Cells Dev 21:2905–2914. https://doi.org/10.1089/scd.2012.0189 PubMedCrossRefGoogle Scholar
  99. Javaherian A, Kriegstein A (2009) A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb Cortex 19(Suppl 1):i70–i77. https://doi.org/10.1093/cercor/bhp029 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jeon HM, Jin X, Lee JS, Oh SY, Sohn YW, Park HJ et al (2008) Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev. https://doi.org/10.1101/gad.1668708
  101. Jhaveri DJ, Mackay EW, Hamlin AS, Marathe SV, Nandam LS, Vaidya VA et al (2010) Norepinephrine directly activates adult hippocampal precursors via 3-adrenergic receptors. J Neurosci 30:2795–2806. https://doi.org/10.1523/JNEUROSCI.3780-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Jiang X, Nardelli J (2015) Cellular and molecular introduction to brain development. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2015.07.007
  103. Jin X, Yin J, Kim SH, Sohn YW, Beck S, Lim YC et al (2011) EGFR-AKT-Smad signaling promotes formation of glioma stem-like cells and tumor angiogenesis by ID3-driven cytokine induction. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-11-1330
  104. Johansson PA, Cappello S, Götz M (2010) Stem cells niches during development-lessons from the cerebral cortex. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2010.04.003
  105. Joppé SE, Hamilton LK, Cochard LM, Levros L-C, Aumont A, Barnabé-Heider F et al (2015) Bone morphogenetic protein dominantly suppresses epidermal growth factor-induced proliferative expansion of adult forebrain neural precursors. Front Neurosci 9:407. https://doi.org/10.3389/fnins.2015.00407 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Joy AM, Beaudry CE, Tran NL, Ponce F a, Holz DR, Demuth T et al (2003) Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 116:4409–4417. https://doi.org/10.1242/jcs.00712 PubMedCrossRefGoogle Scholar
  107. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. https://doi.org/10.1126/science.1251141 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kazanis I (2012) Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology. Neurosci 18:15–27Google Scholar
  109. Kazanis I (2013) Neurogenesis in the adult mammalian brain: how much do we need, how much do we have? Curr Top Behav Neurosci 15:3–29. https://doi.org/10.1007/7854_2012_227 PubMedCrossRefGoogle Scholar
  110. Kazanis I, ffrench-Constant C (2012) The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche. Stem Cells Dev 21:1090–1096. https://doi.org/10.1089/scd.2011.0130
  111. Kazanis I, Belhadi A, Faissner A, ffrench-Constant C (2007) The adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C. J Neurosci 27:13991–13996Google Scholar
  112. Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR et al (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30:9771–9781PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kazanis I, Evans KA, Andreopoulou E, Dimitriou C, Koutsakis C, Karadottir RT et al (2017) Subependymal zone-derived oligodendroblasts respond to focal demyelination but fail to generate myelin in young and aged mice. Stem Cell Reports 8:685–700. https://doi.org/10.1016/j.stemcr.2017.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E et al (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157. https://doi.org/10.1634/stemcells.2007-0082 PubMedCrossRefGoogle Scholar
  115. Kerever A, Yamada T, Suzuki Y, Mercier F, Arikawa-Hirasawa E (2015) Fractone aging in the subventricular zone of the lateral ventricle. J Chem Neuroanat 66:52–60. https://doi.org/10.1016/j.jchemneu.2015.06.001. PubMedCrossRefGoogle Scholar
  116. Keung AJ, Asuri P, Kumar S, Schaffer DV, Hall S (2012) Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol (Camb) 21:1049–1058. https://doi.org/10.1039/c2ib20083j CrossRefGoogle Scholar
  117. Kim Y, Wang W-Z, Comte I, Pastrana E, Tran PB, Brown J et al (2010) Dopamine stimulation of postnatal murine subventricular zone neurogenesis via the D3 receptor. J Neurochem 114:750–760. https://doi.org/10.1111/j.1471-4159.2010.06799.x PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kobayashi M, Nakatani T, Koda T, Matsumoto K-I, Ozaki R, Mochida N et al (2014) Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 7:12. https://doi.org/10.1186/1756-6606-7-12 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505:209–220. https://doi.org/10.1002/cne.21492 PubMedCrossRefGoogle Scholar
  120. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y et al (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7:163–173. https://doi.org/10.1016/j.stem.2010.05.019 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kosodo Y, Röper K, Haubensak W, Marzesco A-M, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324. https://doi.org/10.1038/sj.emboj.7600223 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Kothapalli CR, Kamm RD (2013) 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 34:5995–6007. https://doi.org/10.1016/j.biomaterials.2013.04.042 PubMedCrossRefGoogle Scholar
  123. Koutsakis C, Kazanis I (2016) How necessary is the vasculature in the life of neural stem and progenitor cells? Evidence from evolution, development and the adult nervous system. doi:https://doi.org/10.3389/fncel.2016.00035
  124. Lao CL, Lu C-S, Chen J-C (2013) Dopamine D3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 61:475–489. https://doi.org/10.1002/glia.22449 PubMedCrossRefGoogle Scholar
  125. Lathia JD, Patton B, Eckley DM, Magnus T, Mughal MR, Sasaki T et al (2007) Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J Comp Neurol. https://doi.org/10.1002/cne.21520
  126. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432. https://doi.org/10.1016/j.stem.2010.02.018 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lathia JD, Heddleston JM, Venere M, Rich JN (2011) Cell stem cell minireview deadly teamwork: neural cancer stem Cells and the tumor microenvironment. Stem Cell 8:482–485. https://doi.org/10.1016/j.stem.2011.04.013. Google Scholar
  128. Lathia JD, Li M, Hall PE, Gallagher J, Hale JS, Wu Q et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol. https://doi.org/10.1002/ana.23674
  129. Lathia JD, Li M, Sinyuk M, Alvarado AG, Flavahan WA, Stoltz K et al (2014) High-throughput flow cytometry screening reveals a role for junctional adhesion molecule a as a cancer stem cell maintenance factor. Cell Rep. https://doi.org/10.1016/j.celrep.2013.11.043
  130. Lazarini F, Gabellec MM, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM (2014) Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. J Neurosci 34:14430–14442. https://doi.org/10.1523/JNEUROSCI.5366-13.2014 PubMedCrossRefGoogle Scholar
  131. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A et al (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702. https://doi.org/10.1038/nn.3079 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. https://doi.org/10.1016/j.neuron.2011.01.023
  133. Lepelletier F-X, Mann DMA, Robinson AC, Pinteaux E, Boutin H (2017) Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol 43:167–182. https://doi.org/10.1111/nan.12295 PubMedCrossRefGoogle Scholar
  134. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells cancer stem cell specific molecules involved in neoangiogenesis, including HIF2α and its regulated factors. Cancer Cell 15:501–513. https://doi.org/10.1016/j.ccr.2009.03.018. PubMedPubMedCentralCrossRefGoogle Scholar
  135. Li G, Fang L, Fernández G, Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78:658–672. https://doi.org/10.1016/j.neuron.2013.03.019 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726PubMedCrossRefGoogle Scholar
  137. Limmer S, Weiler A, Volkenhoff A, Babatz F, Klämbt C (2014) The Drosophila blood-brain barrier: development and function of a glial endothelium. Front Neurosci 8:365. https://doi.org/10.3389/fnins.2014.00365 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lin X, Shi Y, Cao Y, Liu W (2016) Recent progress in stem cell differentiation directed by material and mechanical cues. Biomed Mater 11:14109. https://doi.org/10.1088/1748-6041/11/1/014109 CrossRefGoogle Scholar
  139. Liu J, Eder PS, Brand AH (2014) Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes Metab 16:16–20. https://doi.org/10.1111/dom.12337 PubMedCrossRefGoogle Scholar
  140. Long K, Moss L, Laursen L, Boulter L, Ffrench-Constant C (2016) Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun 7:10354. https://doi.org/10.1038/ncomms10354 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Louissaint A, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34:945–960PubMedCrossRefGoogle Scholar
  142. Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR, Tang S-C et al (2009) beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol 7:e1000176. https://doi.org/10.1371/journal.pbio.1000176 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lovelace MD, Gu BJ, Eamegdool SS, Weible MW, Wiley JS, Allen DG et al (2015) P2X7 Receptors mediate innate phagocytosis by human neural precursor cells and neuroblasts. Stem Cells 33:526–541. https://doi.org/10.1002/stem.1864 PubMedCrossRefGoogle Scholar
  144. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus–cerebrospinal fluid system. Nat Rev Neurosci 16:445–457. https://doi.org/10.1038/nrn3921 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Luo J, Shook BA, Daniels SB, Conover JC (2008) Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci 28:3804–3813. https://doi.org/10.1523/JNEUROSCI.0224-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EMK, Lindvall O et al (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346:237–241. https://doi.org/10.1126/science.346.6206.237 PubMedCrossRefGoogle Scholar
  147. Mardones MD, Andaur GA, Varas-Godoy M, Henriquez JF, Salech F, Behrens MI et al (2016) Frizzled-1 receptor regulates adult hippocampal neurogenesis. Mol Brain 9:29. https://doi.org/10.1186/s13041-016-0209-3 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Maria Galan-Moya E, Le Guelte A, Lima Fernandes E, Thirant C, Dwyer J, Bidere N et al (2011) Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. Nat Publ Gr 12:470–47639. https://doi.org/10.1038/embor.2011.39 Google Scholar
  149. Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M et al (2016) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2016.08.011
  150. Marthiens V, Ffrench-Constant C (2009) Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep 10:515–520. https://doi.org/10.1038/embor.2009.36 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. https://doi.org/10.1038/ncb2746
  152. Mathew TC (1999) Association between supraependymal nerve fibres and the ependymal cilia of the mammalian brain. Anat Histol Embryol 28:193–197PubMedCrossRefGoogle Scholar
  153. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS et al (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12:1007–1013. https://doi.org/10.1038/ncb2102 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Mekki-Dauriac S, Agius E, Kan P, Cochard P (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129:5117–5130PubMedGoogle Scholar
  155. Méndez O, Zavadil J, Esencay M, Lukyanov Y, Santovasi D, Wang S-C et al (2010) Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer 9. https://doi.org/10.1186/1476-4598-9-133
  156. Mercier F, Douet V (2014) Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone. J Chem Neuroanat 57:54–61. https://doi.org/10.1016/j.jchemneu.2014.03.005 PubMedCrossRefGoogle Scholar
  157. Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188. https://doi.org/10.1002/cne.10342 PubMedCrossRefGoogle Scholar
  158. Mercier F, Cho Kwon Y, Kodama R (2011) Meningeal/vascular alterations and loss of extracellular matrix in the neurogenic zone of adult BTBR T+ tf/J mice, animal model for autism. Neurosci Lett 498:173–178. https://doi.org/10.1016/j.neulet.2011.05.014 PubMedCrossRefGoogle Scholar
  159. Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY et al (2014) Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. Elife 3:e02669. https://doi.org/10.7554/eLife.02669. PubMedPubMedCentralCrossRefGoogle Scholar
  160. Migaud M, Butrille L, Batailler M (2015) Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: Focus on the sheep hypothalamus. Front Neuroendocrinol 37:146–157. https://doi.org/10.1016/j.yfrne.2014.11.004 PubMedCrossRefGoogle Scholar
  161. Milošević NJ, Judaš M, Aronica E, Kostovic I (2014) Neural ECM in laminar organization and connectivity development in healthy and diseased human brain. Prog Brain Res 214:159–178. https://doi.org/10.1016/B978-0-444-63486-3.00007-4 CrossRefGoogle Scholar
  162. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278. https://doi.org/10.1016/j.stem.2008.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Mobley AK, McCarty JH (2011) β8 integrin is essential for neuroblast migration in the rostral migratory stream. Glia. https://doi.org/10.1002/glia.21199
  164. Morell M, Tsan Y, O’Shea KS (2015) Inducible expression of noggin selectively expands neural progenitors in the adult SVZ. Stem Cell Res 14:79–94. https://doi.org/10.1016/j.scr.2014.11.001 PubMedCrossRefGoogle Scholar
  165. Motomiya M, Kobayashi M, Iwasaki N, Minami A, Matsuoka I (2007) Activity-dependent regulation of BRINP family genes. Biochem Biophys Res Commun 352:623–629. https://doi.org/10.1016/j.bbrc.2006.11.072 PubMedCrossRefGoogle Scholar
  166. Murase S, Horwitz AF (2002) Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22:3568–3579PubMedGoogle Scholar
  167. Nakada M, Nambu E, Furuyama N, Yoshida Y, Takino T, Hayashi Y, et al (2013) Integrin alpha3 is overexpressed in glioma stem-like cells and promotes invasion. doi:https://doi.org/10.1038/bjc.2013.218.
  168. Nomura T, Göritz C, Catchpole T, Henkemeyer M, Frisén J (2010) EphB signaling controls lineage plasticity of adult neural stem cell niche cells. Cell Stem Cell 7:730–743. https://doi.org/10.1016/j.stem.2010.11.009 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Noonan MA, Bulin SE, Fuller DC, Eisch AJ (2010) Reduction of adult hippocampal neurogenesis confers Vulnerability in an animal model of cocaine addiction. J Neurosci 30:304–315. https://doi.org/10.1523/JNEUROSCI.4256-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  170. North HA, Pan L, McGuire TL, Brooker S, Kessler JA (2015) 1-Integrin alters ependymal stem cell bmp receptor localization and attenuates astrogliosis after spinal cord injury. J Neurosci 35:3725–3733. https://doi.org/10.1523/JNEUROSCI.4546-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  171. O’Keeffe GC, Barker RA, Caldwell MA (2009a) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8:2888–2894. https://doi.org/10.4161/cc.8.18.9512 PubMedCrossRefGoogle Scholar
  172. O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009b) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 106:8754–8759. https://doi.org/10.1073/pnas.0803955106 PubMedPubMedCentralCrossRefGoogle Scholar
  173. O’Leary CJ, Bradford D, Chen M, White A, Blackmore DG, Cooper HM (2015) The netrin/RGM receptor, neogenin, controls adult neurogenesis by promoting neuroblast migration and cell cycle exit. Stem Cells 33:503–514. https://doi.org/10.1002/stem.1861 PubMedCrossRefGoogle Scholar
  174. Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A et al (2007) VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2007.06.094
  175. Okano H, Temple S (2009) Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol 19:112–119. https://doi.org/10.1016/j.conb.2009.04.003 PubMedCrossRefGoogle Scholar
  176. Ortega F, Gascón S, Masserdotti G, Deshpande A, Simon C, Fischer J et al (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15:602–613. https://doi.org/10.1038/ncb2736 PubMedCrossRefGoogle Scholar
  177. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME et al (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056. https://doi.org/10.1038/ncb3045 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT (2014) Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci 17:934–942. https://doi.org/10.1038/nn.3734 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494PubMedCrossRefGoogle Scholar
  180. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568. https://doi.org/10.1002/jcp.21812 PubMedCrossRefGoogle Scholar
  181. Pastrana E, Cheng LC, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A 106:6387–6392PubMedPubMedCentralCrossRefGoogle Scholar
  182. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717PubMedGoogle Scholar
  183. Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I et al (2009) TGF-β Increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2009.02.011
  184. Perera TD, Lu D, Thirumangalakudi L, Smith ELP, Yaretskiy A, Rosenblum LA et al (2011) Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural Plast 2011:1–6. https://doi.org/10.1155/2011/875307 PubMedCrossRefGoogle Scholar
  185. Piccirillo SGM, Dietz S, Madhu B, Griffiths J, Price SJ, Collins VP et al (2012) Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin. Br J Cancer 107:462–468. https://doi.org/10.1038/bjc.2012.271 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, Jiang T et al (2011) The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. https://doi.org/10.1002/path.2908
  187. Pluchino S, Cossetti C (2013) How stem cells speak with host immune cells in inflammatory brain diseases. Glia 61:1379–1401. https://doi.org/10.1002/glia.22500 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRefGoogle Scholar
  189. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR et al (2015) Molecular identity of human outer radial glia during cortical development HHS public access. Cell 163:55–67. https://doi.org/10.1016/j.cell.2015.09.004. PubMedPubMedCentralCrossRefGoogle Scholar
  190. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013) Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci U S A 110:E1045–E1054. https://doi.org/10.1073/pnas.1219563110 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. https://doi.org/10.1016/j.cell.2016.04.032
  192. Qiang L, Wu T, Zhang H-W, Lu N, Hu R, Wang Y-J et al (2012) HIF-1alpha; is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 19:284–29495. https://doi.org/10.1038/cdd.2011.95. PubMedCrossRefGoogle Scholar
  193. Radakovits R, Barros CS, Belvindrah R, Patton B, Muller U (2009) Regulation of radial glial survival by signals from the meninges. J Neurosci 29:7694–7705. https://doi.org/10.1523/JNEUROSCI.5537-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541–549PubMedCrossRefGoogle Scholar
  195. Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, Ferrón SR, Aroca-Aguilar JD, Sánchez P et al (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9:331–339. https://doi.org/10.1038/nn1657 PubMedCrossRefGoogle Scholar
  196. Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M et al (2013) α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049. https://doi.org/10.1038/ncomms3049 PubMedCrossRefGoogle Scholar
  197. Rosenberg GA (2017) Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci (Lond) 131:425–437. https://doi.org/10.1042/CS20160604 CrossRefGoogle Scholar
  198. Ruckh JM, Zhao JW, Shadrach JL, Van Wijngaarden P, Rao TN, Wagers AJ et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10:96–103PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS et al (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470. https://doi.org/10.1038/nature09817 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sarkar S, Zemp FJ, Senger D, Robbins SM, Wee Yong V (2015) ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor-initiating cells. Neuro Oncol. https://doi.org/10.1093/neuonc/nou362
  201. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632. https://doi.org/10.1126/science.1119133 PubMedCrossRefGoogle Scholar
  202. Schafer ST, Han J, Pena M, Bohlen Und v, Halbach O, Peters J, Gage FH (2015) The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J Neurosci 35:4983–4998. https://doi.org/10.1523/JNEUROSCI.4130-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Seidel S, Garvalov BK, Wirta V, Von Stechow L, Schänzer A, Meletis K et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain. https://doi.org/10.1093/brain/awq042
  204. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell. https://doi.org/10.1016/j.cell.2012.01.021
  205. Sen S, Dong M, Kumar S, Kreplak L (2009) Isoform-specific contributions of a-actinin to glioma cell mechanobiology. PLoS One 4. https://doi.org/10.1371/journal.pone.0008427
  206. Sen S, Ng WP, Kumar S (2011) Contributions of talin-1 to glioma cell-matrix tensional homeostasis. J R Soc Interface 9:1311–1317. https://doi.org/10.1098/rsif.2011.0567 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shen Q (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340. https://doi.org/10.1126/science.1095505 PubMedCrossRefGoogle Scholar
  208. Shen Q, Wang Y, Kokovay E, Lin G, Chuang S-M, Goderie SK et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300. https://doi.org/10.1016/j.stem.2008.07.026 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Shimogori T, VanSant J, Paik E, Grove EA (2004) Members of theWnt, Fz, andFrp gene families expressed in postnatal mouse cerebral cortex. J Comp Neurol 473:496–510. https://doi.org/10.1002/cne.20135 PubMedCrossRefGoogle Scholar
  210. Sibbe M, Kuner E, Althof D, Frotscher M (2015) Stem- and progenitor cell proliferation in the dentate gyrus of the reeler mouse. PLoS One 10:e0119643. https://doi.org/10.1371/journal.pone.0119643 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F (2016) Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19:643–652. https://doi.org/10.1016/j.stem.2016.06.013 PubMedCrossRefGoogle Scholar
  212. Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Götz M et al (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28:775–787. https://doi.org/10.1002/stem.309 PubMedCrossRefGoogle Scholar
  213. Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S et al (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 12:426–439. https://doi.org/10.1016/j.stem.2013.01.019. PubMedCrossRefGoogle Scholar
  214. Smukler SR, Runciman SB, Xu S, Kooy DVD (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79. https://doi.org/10.1083/jcb.200508085 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, Mckay R et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1a. Oncogene 28:3949–3959. https://doi.org/10.1038/onc.2009.252 PubMedCrossRefGoogle Scholar
  216. Sonego M, Gajendra S, Parsons M, Ma Y, Hobbs C, Zentar MP et al (2013) Fascin regulates the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 33:12171–12185. https://doi.org/10.1523/JNEUROSCI.0653-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Soumier A, Banasr M, Kerkerian-Le Goff L, Daszuta A (2010) Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis. Eur Neuropsychopharmacol 20:336–345. https://doi.org/10.1016/j.euroneuro.2009.11.007 PubMedCrossRefGoogle Scholar
  218. Stacpoole SRL, Bilican B, Webber DJ, Luzhynskaya A, He XL, Compston A et al (2011) Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen. Nat Protoc 6:1229–1240. https://doi.org/10.1038/nprot.2011.380 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M et al (2013) Trnp1 Regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:535–549. https://doi.org/10.1016/j.cell.2013.03.027 PubMedCrossRefGoogle Scholar
  220. Staquicini FI, Dias-neto E, Li J, Snyder EY, Sidman RL, Pasqualini R et al (2009) Discovery of a functional protein complex of netrin-4, laminin γ1 chain, and integrin α6β1 in mouse neural stem cells. Proc Natl Acad Sci U S A 106:2903–2908. https://doi.org/10.1073/pnas.0813286106 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Stenzel D, Wilsch-Bräuninger M, Wong FK, Heuer H, Huttner WB (2014) Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141:795–806. https://doi.org/10.1242/dev.101907 PubMedCrossRefGoogle Scholar
  222. Syed MH, Mark B, Doe CQ (2017) Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates Summary: hormone induction of temporal gene expression in neural progenitors. Elife 6. https://doi.org/10.1101/121855.
  223. Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340. https://doi.org/10.1152/physrev.00027.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Tan X, Liu WA, Zhang X, Li Z, Brown KN, Shi S et al (2016) Vascular Influence on ventral telencephalic progenitors and neocortical interneuron production. Dev Cell 36:624–638. https://doi.org/10.1016/j.devcel.2016.02.023 PubMedPubMedCentralCrossRefGoogle Scholar
  225. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288. https://doi.org/10.1016/j.stem.2008.07.025 PubMedCrossRefGoogle Scholar
  226. Theocharidis U, Long K, Ffrench-Constant C, Faissner A (2014) Chapter 1—Regulation of the neural stem cell compartment by extracellular matrix constituents. Prog Brain Res 214:3–28. https://doi.org/10.1016/B978-0-444-63486-3.00001-3. PubMedCrossRefGoogle Scholar
  227. Thouvenot E, Lafon-Cazal M, Demettre E, Jouin P, Bockaert J, Marin P (2006) The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics 6:5941–5952. https://doi.org/10.1002/pmic.200600096 PubMedCrossRefGoogle Scholar
  228. Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P (2014) Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience. https://doi.org/10.1016/j.neuroscience.2014.06.026
  229. Todd KL, Baker KL, Eastman MB, Kolling FW, Trausch AG, Nelson CE et al (2017) EphA4 regulates neuroblast and astrocyte organization in a neurogenic niche. J Neurosci 37:3738–3716. https://doi.org/10.1523/JNEUROSCI.3738-16.2017 CrossRefGoogle Scholar
  230. Tong CK, Chen J, Cebrián-Silla A, Mirzadeh Z, Obernier K, Guinto CD et al (2014a) Axonal control of the adult neural stem cell niche. Cell Stem Cell 14:500–511. https://doi.org/10.1016/j.stem.2014.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Tong CK, Han Y-G, Shah JK, Obernier K, Guinto CD, Alvarez-Buylla A (2014b) Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci 111:12438–12443. https://doi.org/10.1073/pnas.1321425111 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tong CK, Fuentealba LC, Shah JK, Lindquist RA, Ihrie RA, Guinto CD et al (2015) A dorsal SHH-dependent domain in the V-SVZ produces large numbers of oligodendroglial lineage cells in the postnatal brain. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2015.08.013
  233. Torii M, Hashimoto-Torii K, Levitt P, Rakic P (2009) Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature 461:524–528. https://doi.org/10.1038/nature08362 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Triviño-Paredes J, Patten AR, Gil-Mohapel J, Christie BR (2016) The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 41:23–43. https://doi.org/10.1016/j.yfrne.2016.03.001 PubMedCrossRefGoogle Scholar
  235. Umesh V, Rape AD, Ulrich TA, Kumar S (2014) Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling. PLoS One. https://doi.org/10.1371/journal.pone.0101771
  236. Vandeputte DAA, Troost D, Leenstra S, Ijlst-Keizers H, Ramkema M, Bosch DA et al (2002) Expression and distribution of Id helix-loop-helix proteins in human astrocytic tumors. Glia. https://doi.org/10.1002/glia.10076
  237. Vasudevan A, Long JE, Crandall JE, Rubenstein JLR, Bhide PG (2008) Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 11:429–439. https://doi.org/10.1038/nn2074 PubMedPubMedCentralCrossRefGoogle Scholar
  238. Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS et al (2012) Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway. Cell Signal. https://doi.org/10.1016/j.cellsig.2012.07.002
  239. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells. https://doi.org/10.1002/stem.261
  240. Wang H, Warner-Schmidt J, Varela S, Enikolopov G, Greengard P, Flajolet M (2015) Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proc Natl Acad Sci U S A 112:9745–9750. https://doi.org/10.1073/pnas.1510291112 PubMedPubMedCentralCrossRefGoogle Scholar
  241. Wang J, Fu X, Zhang D, Yu L, Li N, Lu Z et al (2017) ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice. Behav Brain Res 316:145–151. https://doi.org/10.1016/j.bbr.2016.09.007 PubMedCrossRefGoogle Scholar
  242. Willaime-Morawek S, Seaberg RM, Batista C, Labbé E, Attisano L, Gorski JA et al (2006) Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J Cell Biol 175:159–168. https://doi.org/10.1083/jcb.200604123 PubMedPubMedCentralCrossRefGoogle Scholar
  243. Wilsch-Bräuninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution—from cell biology to single genes. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2016.05.004
  244. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2011.07.007
  245. Wong SY, Ulrich TA, Deleyrolle LP, MacKay JL, Lin JMG, Martuscello RT et al (2015) Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-13-3426
  246. Xia S, Lal B, Tung B, Wang S, Goodwin CR, Laterra J (2016) Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro-Oncology. https://doi.org/10.1093/neuonc/nov171
  247. Yamamoto H, Mandai K, Konno D, Maruo T, Matsuzaki F, Takai Y (2015) Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin. Brain Res 1620:139–152. https://doi.org/10.1016/j.brainres.2015.05.012 PubMedCrossRefGoogle Scholar
  248. Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636. https://doi.org/10.1523/JNEUROSCI.0149-06.2006 PubMedCrossRefGoogle Scholar
  249. Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I et al (2014) Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. https://doi.org/10.1101/gad.235515.113
  250. Ying M, Tilghman J, Wei Y, Guerrero-Cazares H, Quinones-Hinojosa A, Ji H et al (2014) Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin α6 inhibition. J Biol Chem 289:32742–32756. https://doi.org/10.1074/jbc.M114.588988 PubMedPubMedCentralCrossRefGoogle Scholar
  251. Yu JM, Kim JH, Song GS, Jung JS (2006) Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Mol Cell Biochem 288:17–28. https://doi.org/10.1007/s11010-005-9113-3 PubMedCrossRefGoogle Scholar
  252. Zhang RL, Chopp M, Roberts C, Liu X, Wei M, Nejad-Davarani SP et al (2014) Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse. PLoS One 9:e113972. https://doi.org/10.1371/journal.pone.0113972 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG, Hamm LL et al (2011) Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-10-4269
  254. Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol. https://doi.org/10.1007/s11060-006-9121-5

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Evangelia Andreopoulou
    • 1
  • Asterios Arampatzis
    • 2
    • 3
  • Melina Patsoni
    • 1
  • Ilias Kazanis
    • 1
    • 2
    Email author
  1. 1.Lab of Developmental Biology, Department of BiologyUniversity of PatrasPatrasGreece
  2. 2.Wellcome Trust- MRC Cambridge Stem Cell Biology InstituteUniversity of CambridgeCambridgeUK
  3. 3.School of MedicineAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations