Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche

  • Nicolás Marichal
  • Cecilia Reali
  • Omar Trujillo-Cenóz
  • Raúl E. RussoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1041)


The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.


Central canal Progenitor cells Neural stem cells Radial glia Spinal cord Plasticity Regeneration 



This work was partly supported by grant FCE 103356 from ANII and grant #167 from Wings for Life Spinal Cord Research Foundation to RER. The authors would like to thank the kind donation of GATA3-GFP transgenic mice by Dr. Stavros Malas, The Cyprus Institute of Neurology and Genetics, Cyprus.


  1. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology. Update and subclassification of the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29PubMedCrossRefGoogle Scholar
  3. Alvarez-Buylla A, Garcı́a-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634PubMedGoogle Scholar
  4. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293PubMedCrossRefGoogle Scholar
  5. Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2007) Brain lipid binding protein is a target of Notch signaling in radial glial cells. Genes Dev 19:1028–1033CrossRefGoogle Scholar
  6. Armstrong J, Zhang L, McClelland AD (2003) Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey. Exp Neurol 180:156–166PubMedCrossRefGoogle Scholar
  7. Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148:453–463PubMedCrossRefGoogle Scholar
  8. Bel-Vialar S, Medevielle F, Pituello F (2007) The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol 305:659–673PubMedCrossRefGoogle Scholar
  9. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739PubMedCrossRefGoogle Scholar
  10. Ben-Ari Y, Spitzer NC (2010) Phenotypic checkpoints regulate neuronal development. Trends Neurosci 33:485–492PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044PubMedGoogle Scholar
  12. Bordey A (2007) Enigmatic GABAergic networks in adult neurogenic zones. Brain Res Brain Res Rev 53:124–134CrossRefGoogle Scholar
  13. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445PubMedCrossRefGoogle Scholar
  14. Butler EG, Ward MB (1965) Reconstitution of the spinal cord following ablation in urodele larvae. J Exp Zool 160:47–65PubMedCrossRefGoogle Scholar
  15. Cebrián-Silla A, Alfaro-Cervelló C, Herranz-Pérez V, Kaneko N, Hwi Park D, Sawamoto K, Alvarez-Buylla A, Lim DA, García-Verdugo JM (2017) Unique organization of the nuclear envelope in the post-natal quiescent neural stem cells. Stem Cell Rep 9:203–216CrossRefGoogle Scholar
  16. Chevallier S, Landry M, Nagy F, Cabelguen JM (2004) Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. Eur J Neurosci 20:1995–2007PubMedCrossRefGoogle Scholar
  17. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci U S A 99:2350–2355PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chittajallu R, Aguirre A, Gallo V (2004) NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J Physiol 561:109–122PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coggeshall RE, Youngblood CS (1983) Recovery from spinal transection in fish: regrowth of axons past the transection. Neurosci Lett 38:227–231PubMedCrossRefGoogle Scholar
  20. Corns LF, Deuchars J, Deuchars SA (2013) GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord. Neurosci Lett 553:57–62PubMedPubMedCentralCrossRefGoogle Scholar
  21. Corns LF, Atkinson L, Daniel J, Edwards IJ, New L, Deuchars J, Deuchars SA (2015) Cholinergic enhancement of cell proliferation in the postnatal neurogenic niche of the mammalian spinal cord. Stem Cells 33:2864–2876PubMedPubMedCentralCrossRefGoogle Scholar
  22. Davies HG, Small JV (1968) Structural units in chromatin and their orientation on membranes. Nature 217:1122–1125PubMedCrossRefGoogle Scholar
  23. Davis BM, Ayers JL, Koran L, Carlson J, Anderson MC, Simpson SB Jr (1990) Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp Neurol 108:198–213PubMedCrossRefGoogle Scholar
  24. Dervan AG, Roberts BL (2003) Reaction of spinal cord central canal cells to cord transaction and their contribution to cord regeneration. J Comp Neurol 458:293–306PubMedCrossRefGoogle Scholar
  25. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503PubMedCrossRefGoogle Scholar
  26. Diaz Queiroz JP, Echeverri K (2013) Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 451:353–364CrossRefGoogle Scholar
  27. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subgerminal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  28. Egar M, Simpson SB, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard Anolis carolinensis. J Morphol 131:131–152PubMedCrossRefGoogle Scholar
  29. Eisch AJ, Mandyam CD (2007) Adult neurogenesis: can analysis of cell cycle proteins move us "Beyond BrdU"? Curr Pharm Biotechnol 8:147–165PubMedCrossRefGoogle Scholar
  30. Fernández A, Radmilovich M, Trujillo-Cenóz O (2002) Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol 453:131–144PubMedCrossRefGoogle Scholar
  31. Filippov V, Kronenberg G, Pivneva T et al (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382PubMedCrossRefGoogle Scholar
  32. Fiorelli R, Cebrian-Silla A, Garcia-Verdugo JM, Raineteau O (2013) The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Glia 61:2100–2113PubMedCrossRefGoogle Scholar
  33. Frischknecht F, Randall AD (1998) Voltage- and ligand-gated ion channels in floor plate neuroepithelia of the rat. Neuroscience 85:1135–1149PubMedCrossRefGoogle Scholar
  34. Fu H, Qi Y, Tan MIN, Cai J, Hu X, Liu Z, Qiu M (2003) Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1 + ventral neural progenitor cells. J Comp Neurol 456:237–244PubMedCrossRefGoogle Scholar
  35. Gandelman M, Levy M, Cassina P, Barbeito L, Beckman JS (2013) P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway. J Neurochem 126:382–388PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532PubMedCrossRefGoogle Scholar
  37. Gao Z, Nissen JC, Legakis L, Tsirka SE (2015) Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience 297:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ghiani CA, Yuan X, Eisen AM, Knutson PL, DePinho RA, McBain CJ, Gallo V (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 19:5380–5392PubMedGoogle Scholar
  39. Gibbs KM, Szaro BG (2006) Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Res 1088:68–72PubMedCrossRefGoogle Scholar
  40. Glaser T, Resende RR, Ulrich H (2013) Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal 11:12. PubMedPubMedCentralCrossRefGoogle Scholar
  41. Goodman T, Hajihosseini MK (2015) Hypothalamic tanycytes—masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 9:387. PubMedPubMedCentralCrossRefGoogle Scholar
  42. Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044PubMedCrossRefGoogle Scholar
  43. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780PubMedCrossRefGoogle Scholar
  44. Hamilton LK, Truong MK, Bednarczyk MR, Aumont A, Fernandes KJ (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056PubMedCrossRefGoogle Scholar
  45. Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30PubMedCrossRefGoogle Scholar
  46. Hasegawa K, Chang Y-W, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2004) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193:394–410CrossRefGoogle Scholar
  47. Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29:129–147PubMedCrossRefGoogle Scholar
  48. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774PubMedPubMedCentralGoogle Scholar
  49. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde A, Götz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315PubMedCrossRefGoogle Scholar
  50. Hooker D (1932) Spinal cord regeneration in the young rainbow fish, Lebistes reticulatus. J Comp Neurol 56:277–297CrossRefGoogle Scholar
  51. Horner PJ, Palmer TD (2003) New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci 26:597–603PubMedCrossRefGoogle Scholar
  52. Horner PH, Power AE, Kempermann G, Kuhn GH, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228PubMedGoogle Scholar
  53. Horstmann E (1954) Die Faserglia des Selachiergehirns. Zellforsch 39:588–617CrossRefGoogle Scholar
  54. Hugnot JP, Franzen R (2011) The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci 16:1044–1059CrossRefGoogle Scholar
  55. Jacquet BV, Salinas-Mondragon R, Liang H, Therit B, Buie JD, Dykstra M, Campbell K, Ostrowski LE, Brody SL, Ghashghaei HT (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136:4021–4031PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jang MH, Song H, Ming GL (2008) Regulation of adult neurogenesis by neurotransmitters. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 397–421Google Scholar
  57. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29PubMedCrossRefGoogle Scholar
  58. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRefGoogle Scholar
  59. Kempermann G (2008) Activity dependency and aging in the regulation of adult neurogenesis. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 341–362Google Scholar
  60. Kempermann G, Song H, Gage F (2008) Neurogenesis in the adult hippocampus. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 159–174Google Scholar
  61. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532PubMedCrossRefGoogle Scholar
  62. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003PubMedCrossRefGoogle Scholar
  63. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kutna V, Sevc J, Gombalov Z, Matiasova A, Daxnerova Z (2014) Enigmatic cerebrospinal fluid-contacting neurons arise even after the termination of neurogenesis in the rat spinal cord during embryonic development and retain their immature-like characteristics until adulthood. Acta Histochem 116:278–285PubMedCrossRefGoogle Scholar
  65. Lee SK, Pfaff SL (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat Neurosci 4:1183–1191PubMedCrossRefGoogle Scholar
  66. Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J (2013) Spinal cord regeneration: Lessons for mammals from non-mammalian vertebrates. Genesis 51:529–544PubMedCrossRefGoogle Scholar
  67. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47PubMedCrossRefGoogle Scholar
  68. Li X, Floriddia EM, Toskas K, Fernandes KJL, Guérout N, Barnabé-Heider F (2016) Regenerative potential of ependymal cells for spinal cord injuries over time. EBioMedicine 13:55–65PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lim DA, Huang Y-C, Alvarez-Buylla A (2008) Adult subventricular zone and olfactory bulb neurogenesis. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor, New YorkGoogle Scholar
  70. Lin JH, Takano T, Arcuino G, Wang X, Hu F, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366PubMedCrossRefGoogle Scholar
  71. Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187PubMedPubMedCentralCrossRefGoogle Scholar
  72. Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410PubMedCrossRefGoogle Scholar
  73. Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P (2008) The role of ATP signalling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 105:11802–11807PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193PubMedCrossRefGoogle Scholar
  75. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedCrossRefGoogle Scholar
  76. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298PubMedCrossRefGoogle Scholar
  77. Lucassen PJ, Oomen CA, van Dam AM, Czéh B (2008) Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep and inflammation. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 363–396Google Scholar
  78. Ma DK, Ming G-l, Gage FH, Song H (2008) Neurogenic niches in the adult mammalian brain. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor, New York, pp 207–226Google Scholar
  79. MacFarlane SN, Sontheimer H (2000a) Modulation of Kv1.5 currents by Src tyrosine phosphorylation: potential role in the differentiation of astrocytes. J Neurosci 20:5245–5253PubMedGoogle Scholar
  80. MacFarlane SN, Sontheimer H (2000b) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48PubMedCrossRefGoogle Scholar
  81. Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10:1001–1014PubMedCrossRefGoogle Scholar
  82. Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE (2009) Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci 29:10010–10024PubMedPubMedCentralCrossRefGoogle Scholar
  83. Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE (2012) Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord. Stem Cells 30:2020–2031PubMedPubMedCentralCrossRefGoogle Scholar
  84. Marichal N, Fabbiani G, Trujillo-Cenóz O, Russo RE (2016) Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signal 12:331–341PubMedPubMedCentralCrossRefGoogle Scholar
  85. Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858PubMedCrossRefGoogle Scholar
  86. Masahira N, Takebayashi H, Ono K, Watanabe K, Ding L, Furusho M, Ogawa Y, Nabeshima Y, Alvarez-Buylla A, Shimizu K, Ikenaka K (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev Biol 293:358–369PubMedCrossRefGoogle Scholar
  87. Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062PubMedCrossRefGoogle Scholar
  88. McHedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093PubMedCrossRefGoogle Scholar
  89. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, Frisén J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:1494–1507CrossRefGoogle Scholar
  90. Mestres P, Garfia A (1980) Effects of cytochalasin B on the ependyma. Scan Electron Microsc 3:465–474Google Scholar
  91. Michel ME, Reier PJ (1979) Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548PubMedCrossRefGoogle Scholar
  92. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250PubMedCrossRefGoogle Scholar
  93. Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R (2015) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 104:243–254PubMedCrossRefGoogle Scholar
  94. Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD (2016) Injury-induced ctgf directs glial bridging and spinal cord regeneration in Zebrafish. Science 354:630–634PubMedPubMedCentralCrossRefGoogle Scholar
  95. Molina B, Rodríguez EM, Peruzzo B, Caprile T, Nualart F (2001) Spatial distribution of Reissner’s fiber glycoproteins in the filum terminale of the rat and rabbit. Microsc Res Tech 52:552–563PubMedCrossRefGoogle Scholar
  96. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mothe AJ, Tator CH (2005) Proliferation, migration, and diferentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord inury in the adult rat. Neuroscience 131:177–187PubMedCrossRefGoogle Scholar
  98. Nacher J, Varea E, Blasco-Ibanez JM, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, McEwen BS (2005) Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J Neurosci Res 81:753–761PubMedCrossRefGoogle Scholar
  99. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173PubMedGoogle Scholar
  100. Nornes HO, Das GD (1972) Temporal pattern of neurogenesis in spinal cord: cytoarchitecture and directed growth of axons. Proc Natl Acad Sci U S A 69:1962–1966PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nornes HO, Das GD (1974) Temporal pattern of neurogenesis in spinal cord of rat. I. An autoradiographic study—time and sites of origin and migration and settling patterns of neuroblasts. Brain Res 73:121–138PubMedCrossRefGoogle Scholar
  102. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493PubMedPubMedCentralCrossRefGoogle Scholar
  103. Peters A, Palay SL, Webster H dF (1991) The ependyma. In: The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, Oxford, pp 312–327Google Scholar
  104. Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM (2016) The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 143:880–891PubMedPubMedCentralCrossRefGoogle Scholar
  105. Piatt J, Piatt M (1958) Transection of the spinal cord in the adult frog. Anat Rec 131:81–95PubMedCrossRefGoogle Scholar
  106. Pinto L, Götz M (2007) Radial glial cell heterogeneity-the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23PubMedCrossRefGoogle Scholar
  107. Ramón y Cajal S (1909) Histologie du Systeme Nerveux de l’homme et des vertébres, vol I. (Edited by Consejo superior de Investigaciones Científicas, 1952). Maloine, ParisGoogle Scholar
  108. Ramón y Cajal SR (1913) Estudios sobre la degeneración y regeneración del sistema nervioso. T I-II. Degeneración y regeneración de los centros nerviosos. Nicolás Moya, MadridGoogle Scholar
  109. Reali C, Fernández A, Radmilovich M, Trujillo-Cenóz O, Russo RE (2011) GABAergic signalling in a neurogenic niche of the turtle spinal cord. J Physiol 589:5633–5647PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rehermann MI, Marichal N, Russo R, Trujillo-Cenoz O (2009) Neural Reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol 515:197–214PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rehermann MI, Santiñaqui FF, López-Carro B, Russo R, Trujillo-Cenoz O (2011) Cell proliferation and cytoarchitectural remodelling in the fresh-water turtle Trachemys dorbignyi. Cell Tissue Res 344:415–433PubMedPubMedCentralCrossRefGoogle Scholar
  112. Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci 28:8510–8516PubMedCrossRefGoogle Scholar
  113. Ren Y, Ao Y, O’Shea TM, Burda JE, Bernstein AM, Brumm AJ, Muthusamy N, Ghashghaei HT, Carmichael ST, Cheng L, Sofroniew MV (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 7:41122. PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedCrossRefGoogle Scholar
  115. Roberts BL, Maslam S, Scholten G, Smit W (1995) Dopaminergic and GABAergic cerebrospinal fluid-contacting neurons along the central canal of the spinal cord of the eel and trout. J Comp Neurol 354:423–437PubMedCrossRefGoogle Scholar
  116. Rovainen CM (1976) Regeneration of Müller and Mauthner axons after spinal cord transection in larval lampreys. J Comp Neurol 168:545–554PubMedCrossRefGoogle Scholar
  117. Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419PubMedCrossRefGoogle Scholar
  118. Russo RE, Hounsgaard J (1999) Dynamics of intrinsic electrophysiological properties in spinal cord neurones. Prog Biophys Mol Biol 72:329–365PubMedCrossRefGoogle Scholar
  119. Russo RE, Fernández A, Reali C, Radmilovich M, Trujillo-Cenóz O (2004) Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord. J Physiol 3:831–838CrossRefGoogle Scholar
  120. Russo RE, Reali C, Radmilovich M, Fernández A, Trujillo-Cenóz O (2008) Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309PubMedCrossRefGoogle Scholar
  121. Sabelström H, Stenudd M, Réu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Göritz C, Frisén J (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–640PubMedCrossRefGoogle Scholar
  122. Sabourin JC, Ackema KB, Ohayon D, Guichet PO, Perrin FE, Garces A, Ripoll C, Charite J, Simonneu L, Ketenmann H, Zine A, Pivat A, Valmier J, Pattyn A, Hugnot JP (2009) A mesenchymal-like ZEB1+ niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells 27:2722–2733PubMedCrossRefGoogle Scholar
  123. Schaarschmidt G, Wegner F, Schwarz SC, Schmidt H, Schwarz J (2009) Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS One 4:e6168. PubMedPubMedCentralCrossRefGoogle Scholar
  124. Schnapp E, Kragl M, Rubin L, Tanaka EM (2005) Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132:3243–3253PubMedCrossRefGoogle Scholar
  125. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedGoogle Scholar
  126. Sevc J, Daxnerova Z, Hanova V, Koval J (2011) Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord. Acta Histochem 113:156–162PubMedCrossRefGoogle Scholar
  127. Shifman MI, Jin LQ, Selzer M (2007) Regeneration in the lamprey spinal cord. In: Becker CG, Becker T (eds) Model organisms in spinal cord regeneration. Wiley-VCH Verlag, Weinheim, pp 229–262Google Scholar
  128. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156PubMedCrossRefGoogle Scholar
  129. Sims RT (1962) Transection of the spinal cord in developing Xenopus laevis. Embryol Exp Morphol 10:115–126Google Scholar
  130. Singer M, Nordlander RTH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blue print hypothesis of neural pathway patterning. J Comp Neurol 185:1–22PubMedCrossRefGoogle Scholar
  131. Smith DO, Rosenheimer JL, Kalil RE (2008) Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells. PLoS One 3:e1604PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sontheimer H, Trotter J, Schachner M, Kettenmann H (1989) Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron 2:1135–1145PubMedCrossRefGoogle Scholar
  133. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedCrossRefGoogle Scholar
  134. Spitzer NC, Root CM, Borodinsky LN (2004) Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci 27:415–421PubMedCrossRefGoogle Scholar
  135. Stewart RR, Zigova T, Luskin MB (1999) Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain. J Neurophysiol 81:95–102PubMedGoogle Scholar
  136. Stoeckel ME, Uhl-Bronner S, Hugel S, Veinante P, Klein MJ, Mutterer J, Freund-Mercier MJ, Schlichter R (2003) Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol 457:159–174PubMedCrossRefGoogle Scholar
  137. Sugimori M, Nagao M, Bertrand N, Parras CM, Guillemot F, Nakafuku M (2007) Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134:1617–1629PubMedCrossRefGoogle Scholar
  138. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359PubMedCrossRefGoogle Scholar
  139. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738PubMedCrossRefGoogle Scholar
  140. Takeda A, Goris RC, Funakoshi K (2007) Regeneration of descending projections to the spinal cord neurons after spinal hemisection in the goldfish. Brain Res 1155:17–23PubMedCrossRefGoogle Scholar
  141. Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713–723PubMedCrossRefGoogle Scholar
  142. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643PubMedCrossRefGoogle Scholar
  143. Trujillo-Cenóz O, Fernández A, Radmilovich M, Realli C, Russo R (2007) Cytological organization of the central gelatinosa in the turtle spinal cord. J Comp Neurol 502:291–308PubMedCrossRefGoogle Scholar
  144. Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F (2017) Gene expression profiling in the injured spinal cord of Trachemys scripta elegans: an amniote with self-repair capabilities. Front Mol Neurosci 10:17. PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vigh B, Vigh-Teichmann I (1998) Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech 41:57–83PubMedCrossRefGoogle Scholar
  146. Vigh B, Vigh-Teichmann I, Aros B (1977) Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord. Cell Tissue Res 183:541–552PubMedCrossRefGoogle Scholar
  147. Vigh B, Vigh-Teichmann I, Manzano e Silva MJ, van den Pol AN (1983) Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in various vertebrates. Cell Tissue Res 231:615–621PubMedCrossRefGoogle Scholar
  148. Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal. Arch Histol Jap 46:427–468PubMedCrossRefGoogle Scholar
  149. Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827PubMedCrossRefGoogle Scholar
  151. Webb SE, Moreau M, Leclerc C, Miller AL (2005) Calcium transients and neural induction in vertebrates. Cell Calcium 37:375–385PubMedCrossRefGoogle Scholar
  152. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  153. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661PubMedCrossRefGoogle Scholar
  154. Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 206:344–347PubMedCrossRefGoogle Scholar
  155. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684PubMedCrossRefGoogle Scholar
  156. Yu K, McGlynn S, Matise MP (2013) Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 140:1594–1604PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhang F, Clarke JDW, Ferretti P (2000) FGF-2 up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo. Dev Biol 225:381–391PubMedCrossRefGoogle Scholar
  158. Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflügers Arch 452:573–588PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicolás Marichal
    • 1
    • 2
  • Cecilia Reali
    • 1
  • Omar Trujillo-Cenóz
    • 1
  • Raúl E. Russo
    • 1
    Email author
  1. 1.Neurofisiología Celular y MolecularInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Institute of Physiological ChemistryUniversity Medical Center, Johannes Gutenberg University MainzMainzGermany

Personalised recommendations