Skip to main content

Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche

  • Chapter
  • First Online:
Stem Cell Microenvironments and Beyond

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1041))

Abstract

The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology. Update and subclassification of the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcı́a-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  CAS  PubMed  Google Scholar 

  • Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2007) Brain lipid binding protein is a target of Notch signaling in radial glial cells. Genes Dev 19:1028–1033

    Article  CAS  Google Scholar 

  • Armstrong J, Zhang L, McClelland AD (2003) Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey. Exp Neurol 180:156–166

    Article  PubMed  Google Scholar 

  • Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148:453–463

    Article  CAS  PubMed  Google Scholar 

  • Bel-Vialar S, Medevielle F, Pituello F (2007) The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol 305:659–673

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Spitzer NC (2010) Phenotypic checkpoints regulate neuronal development. Trends Neurosci 33:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044

    CAS  PubMed  Google Scholar 

  • Bordey A (2007) Enigmatic GABAergic networks in adult neurogenic zones. Brain Res Brain Res Rev 53:124–134

    Article  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  CAS  PubMed  Google Scholar 

  • Butler EG, Ward MB (1965) Reconstitution of the spinal cord following ablation in urodele larvae. J Exp Zool 160:47–65

    Article  CAS  PubMed  Google Scholar 

  • Cebrián-Silla A, Alfaro-Cervelló C, Herranz-Pérez V, Kaneko N, Hwi Park D, Sawamoto K, Alvarez-Buylla A, Lim DA, García-Verdugo JM (2017) Unique organization of the nuclear envelope in the post-natal quiescent neural stem cells. Stem Cell Rep 9:203–216

    Article  CAS  Google Scholar 

  • Chevallier S, Landry M, Nagy F, Cabelguen JM (2004) Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. Eur J Neurosci 20:1995–2007

    Article  PubMed  Google Scholar 

  • Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci U S A 99:2350–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittajallu R, Aguirre A, Gallo V (2004) NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J Physiol 561:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coggeshall RE, Youngblood CS (1983) Recovery from spinal transection in fish: regrowth of axons past the transection. Neurosci Lett 38:227–231

    Article  CAS  PubMed  Google Scholar 

  • Corns LF, Deuchars J, Deuchars SA (2013) GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord. Neurosci Lett 553:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corns LF, Atkinson L, Daniel J, Edwards IJ, New L, Deuchars J, Deuchars SA (2015) Cholinergic enhancement of cell proliferation in the postnatal neurogenic niche of the mammalian spinal cord. Stem Cells 33:2864–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies HG, Small JV (1968) Structural units in chromatin and their orientation on membranes. Nature 217:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Ayers JL, Koran L, Carlson J, Anderson MC, Simpson SB Jr (1990) Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp Neurol 108:198–213

    Article  CAS  PubMed  Google Scholar 

  • Dervan AG, Roberts BL (2003) Reaction of spinal cord central canal cells to cord transaction and their contribution to cord regeneration. J Comp Neurol 458:293–306

    Article  PubMed  Google Scholar 

  • Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503

    Article  CAS  PubMed  Google Scholar 

  • Diaz Queiroz JP, Echeverri K (2013) Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 451:353–364

    Article  CAS  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subgerminal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  • Egar M, Simpson SB, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard Anolis carolinensis. J Morphol 131:131–152

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Mandyam CD (2007) Adult neurogenesis: can analysis of cell cycle proteins move us "Beyond BrdU"? Curr Pharm Biotechnol 8:147–165

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Radmilovich M, Trujillo-Cenóz O (2002) Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol 453:131–144

    Article  PubMed  Google Scholar 

  • Filippov V, Kronenberg G, Pivneva T et al (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    Article  CAS  PubMed  Google Scholar 

  • Fiorelli R, Cebrian-Silla A, Garcia-Verdugo JM, Raineteau O (2013) The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Glia 61:2100–2113

    Article  PubMed  Google Scholar 

  • Frischknecht F, Randall AD (1998) Voltage- and ligand-gated ion channels in floor plate neuroepithelia of the rat. Neuroscience 85:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Qi Y, Tan MIN, Cai J, Hu X, Liu Z, Qiu M (2003) Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1 + ventral neural progenitor cells. J Comp Neurol 456:237–244

    Article  CAS  PubMed  Google Scholar 

  • Gandelman M, Levy M, Cassina P, Barbeito L, Beckman JS (2013) P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway. J Neurochem 126:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Nissen JC, Legakis L, Tsirka SE (2015) Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience 297:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiani CA, Yuan X, Eisen AM, Knutson PL, DePinho RA, McBain CJ, Gallo V (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 19:5380–5392

    CAS  PubMed  Google Scholar 

  • Gibbs KM, Szaro BG (2006) Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Res 1088:68–72

    Article  CAS  PubMed  Google Scholar 

  • Glaser T, Resende RR, Ulrich H (2013) Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal 11:12. https://doi.org/10.1186/1478-811X-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman T, Hajihosseini MK (2015) Hypothalamic tanycytes—masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 9:387. https://doi.org/10.3389/fnins.2015.00387

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044

    Article  PubMed  Google Scholar 

  • Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780

    Article  CAS  PubMed  Google Scholar 

  • Hamilton LK, Truong MK, Bednarczyk MR, Aumont A, Fernandes KJ (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Chang Y-W, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2004) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193:394–410

    Article  CAS  Google Scholar 

  • Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29:129–147

    Article  CAS  PubMed  Google Scholar 

  • Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde A, Götz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315

    Article  CAS  PubMed  Google Scholar 

  • Hooker D (1932) Spinal cord regeneration in the young rainbow fish, Lebistes reticulatus. J Comp Neurol 56:277–297

    Article  Google Scholar 

  • Horner PJ, Palmer TD (2003) New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci 26:597–603

    Article  CAS  PubMed  Google Scholar 

  • Horner PH, Power AE, Kempermann G, Kuhn GH, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    CAS  PubMed  Google Scholar 

  • Horstmann E (1954) Die Faserglia des Selachiergehirns. Zellforsch 39:588–617

    Article  CAS  Google Scholar 

  • Hugnot JP, Franzen R (2011) The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci 16:1044–1059

    Article  CAS  Google Scholar 

  • Jacquet BV, Salinas-Mondragon R, Liang H, Therit B, Buie JD, Dykstra M, Campbell K, Ostrowski LE, Brody SL, Ghashghaei HT (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136:4021–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang MH, Song H, Ming GL (2008) Regulation of adult neurogenesis by neurotransmitters. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 397–421

    Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G (2008) Activity dependency and aging in the regulation of adult neurogenesis. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 341–362

    Google Scholar 

  • Kempermann G, Song H, Gage F (2008) Neurogenesis in the adult hippocampus. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 159–174

    Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  PubMed  Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003

    Article  CAS  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutna V, Sevc J, Gombalov Z, Matiasova A, Daxnerova Z (2014) Enigmatic cerebrospinal fluid-contacting neurons arise even after the termination of neurogenesis in the rat spinal cord during embryonic development and retain their immature-like characteristics until adulthood. Acta Histochem 116:278–285

    Article  PubMed  Google Scholar 

  • Lee SK, Pfaff SL (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat Neurosci 4:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J (2013) Spinal cord regeneration: Lessons for mammals from non-mammalian vertebrates. Genesis 51:529–544

    Article  PubMed  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  CAS  PubMed  Google Scholar 

  • Li X, Floriddia EM, Toskas K, Fernandes KJL, Guérout N, Barnabé-Heider F (2016) Regenerative potential of ependymal cells for spinal cord injuries over time. EBioMedicine 13:55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Huang Y-C, Alvarez-Buylla A (2008) Adult subventricular zone and olfactory bulb neurogenesis. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor, New York

    Google Scholar 

  • Lin JH, Takano T, Arcuino G, Wang X, Hu F, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410

    Article  PubMed  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P (2008) The role of ATP signalling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 105:11802–11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  CAS  PubMed  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Lucassen PJ, Oomen CA, van Dam AM, Czéh B (2008) Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep and inflammation. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 363–396

    Google Scholar 

  • Ma DK, Ming G-l, Gage FH, Song H (2008) Neurogenic niches in the adult mammalian brain. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor, New York, pp 207–226

    Google Scholar 

  • MacFarlane SN, Sontheimer H (2000a) Modulation of Kv1.5 currents by Src tyrosine phosphorylation: potential role in the differentiation of astrocytes. J Neurosci 20:5245–5253

    CAS  PubMed  Google Scholar 

  • MacFarlane SN, Sontheimer H (2000b) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE (2009) Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci 29:10010–10024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE (2012) Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord. Stem Cells 30:2020–2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Marichal N, Fabbiani G, Trujillo-Cenóz O, Russo RE (2016) Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signal 12:331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Masahira N, Takebayashi H, Ono K, Watanabe K, Ding L, Furusho M, Ogawa Y, Nabeshima Y, Alvarez-Buylla A, Shimizu K, Ikenaka K (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev Biol 293:358–369

    Article  CAS  PubMed  Google Scholar 

  • Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • McHedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093

    Article  CAS  PubMed  Google Scholar 

  • Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, Frisén J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:1494–1507

    Article  CAS  Google Scholar 

  • Mestres P, Garfia A (1980) Effects of cytochalasin B on the ependyma. Scan Electron Microsc 3:465–474

    Google Scholar 

  • Michel ME, Reier PJ (1979) Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R (2015) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 104:243–254

    Article  PubMed  CAS  Google Scholar 

  • Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD (2016) Injury-induced ctgf directs glial bridging and spinal cord regeneration in Zebrafish. Science 354:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina B, Rodríguez EM, Peruzzo B, Caprile T, Nualart F (2001) Spatial distribution of Reissner’s fiber glycoproteins in the filum terminale of the rat and rabbit. Microsc Res Tech 52:552–563

    Article  CAS  PubMed  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothe AJ, Tator CH (2005) Proliferation, migration, and diferentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord inury in the adult rat. Neuroscience 131:177–187

    Article  CAS  PubMed  Google Scholar 

  • Nacher J, Varea E, Blasco-Ibanez JM, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, McEwen BS (2005) Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J Neurosci Res 81:753–761

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    CAS  PubMed  Google Scholar 

  • Nornes HO, Das GD (1972) Temporal pattern of neurogenesis in spinal cord: cytoarchitecture and directed growth of axons. Proc Natl Acad Sci U S A 69:1962–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nornes HO, Das GD (1974) Temporal pattern of neurogenesis in spinal cord of rat. I. An autoradiographic study—time and sites of origin and migration and settling patterns of neuroblasts. Brain Res 73:121–138

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters A, Palay SL, Webster H dF (1991) The ependyma. In: The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, Oxford, pp 312–327

    Google Scholar 

  • Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM (2016) The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 143:880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatt J, Piatt M (1958) Transection of the spinal cord in the adult frog. Anat Rec 131:81–95

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Götz M (2007) Radial glial cell heterogeneity-the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1909) Histologie du Systeme Nerveux de l’homme et des vertébres, vol I. (Edited by Consejo superior de Investigaciones Científicas, 1952). Maloine, Paris

    Google Scholar 

  • Ramón y Cajal SR (1913) Estudios sobre la degeneración y regeneración del sistema nervioso. T I-II. Degeneración y regeneración de los centros nerviosos. Nicolás Moya, Madrid

    Google Scholar 

  • Reali C, Fernández A, Radmilovich M, Trujillo-Cenóz O, Russo RE (2011) GABAergic signalling in a neurogenic niche of the turtle spinal cord. J Physiol 589:5633–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehermann MI, Marichal N, Russo R, Trujillo-Cenoz O (2009) Neural Reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol 515:197–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehermann MI, Santiñaqui FF, López-Carro B, Russo R, Trujillo-Cenoz O (2011) Cell proliferation and cytoarchitectural remodelling in the fresh-water turtle Trachemys dorbignyi. Cell Tissue Res 344:415–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci 28:8510–8516

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Ao Y, O’Shea TM, Burda JE, Bernstein AM, Brumm AJ, Muthusamy N, Ghashghaei HT, Carmichael ST, Cheng L, Sofroniew MV (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 7:41122. https://doi.org/10.1038/srep41122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  CAS  PubMed  Google Scholar 

  • Roberts BL, Maslam S, Scholten G, Smit W (1995) Dopaminergic and GABAergic cerebrospinal fluid-contacting neurons along the central canal of the spinal cord of the eel and trout. J Comp Neurol 354:423–437

    Article  CAS  PubMed  Google Scholar 

  • Rovainen CM (1976) Regeneration of Müller and Mauthner axons after spinal cord transection in larval lampreys. J Comp Neurol 168:545–554

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    Article  CAS  PubMed  Google Scholar 

  • Russo RE, Hounsgaard J (1999) Dynamics of intrinsic electrophysiological properties in spinal cord neurones. Prog Biophys Mol Biol 72:329–365

    Article  CAS  PubMed  Google Scholar 

  • Russo RE, Fernández A, Reali C, Radmilovich M, Trujillo-Cenóz O (2004) Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord. J Physiol 3:831–838

    Article  CAS  Google Scholar 

  • Russo RE, Reali C, Radmilovich M, Fernández A, Trujillo-Cenóz O (2008) Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309

    Article  CAS  PubMed  Google Scholar 

  • Sabelström H, Stenudd M, Réu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Göritz C, Frisén J (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–640

    Article  PubMed  CAS  Google Scholar 

  • Sabourin JC, Ackema KB, Ohayon D, Guichet PO, Perrin FE, Garces A, Ripoll C, Charite J, Simonneu L, Ketenmann H, Zine A, Pivat A, Valmier J, Pattyn A, Hugnot JP (2009) A mesenchymal-like ZEB1+ niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells 27:2722–2733

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt G, Wegner F, Schwarz SC, Schmidt H, Schwarz J (2009) Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS One 4:e6168. https://doi.org/10.1371/journal.pone.0006168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schnapp E, Kragl M, Rubin L, Tanaka EM (2005) Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132:3243–3253

    Article  CAS  PubMed  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  • Sevc J, Daxnerova Z, Hanova V, Koval J (2011) Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord. Acta Histochem 113:156–162

    Article  CAS  PubMed  Google Scholar 

  • Shifman MI, Jin LQ, Selzer M (2007) Regeneration in the lamprey spinal cord. In: Becker CG, Becker T (eds) Model organisms in spinal cord regeneration. Wiley-VCH Verlag, Weinheim, pp 229–262

    Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  • Sims RT (1962) Transection of the spinal cord in developing Xenopus laevis. Embryol Exp Morphol 10:115–126

    CAS  Google Scholar 

  • Singer M, Nordlander RTH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blue print hypothesis of neural pathway patterning. J Comp Neurol 185:1–22

    Article  CAS  PubMed  Google Scholar 

  • Smith DO, Rosenheimer JL, Kalil RE (2008) Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells. PLoS One 3:e1604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sontheimer H, Trotter J, Schachner M, Kettenmann H (1989) Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron 2:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed  Google Scholar 

  • Spitzer NC, Root CM, Borodinsky LN (2004) Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci 27:415–421

    Article  CAS  PubMed  Google Scholar 

  • Stewart RR, Zigova T, Luskin MB (1999) Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain. J Neurophysiol 81:95–102

    CAS  PubMed  Google Scholar 

  • Stoeckel ME, Uhl-Bronner S, Hugel S, Veinante P, Klein MJ, Mutterer J, Freund-Mercier MJ, Schlichter R (2003) Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol 457:159–174

    Article  PubMed  Google Scholar 

  • Sugimori M, Nagao M, Bertrand N, Parras CM, Guillemot F, Nakafuku M (2007) Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134:1617–1629

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Goris RC, Funakoshi K (2007) Regeneration of descending projections to the spinal cord neurons after spinal hemisection in the goldfish. Brain Res 1155:17–23

    Article  CAS  PubMed  Google Scholar 

  • Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713–723

    Article  CAS  PubMed  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Cenóz O, Fernández A, Radmilovich M, Realli C, Russo R (2007) Cytological organization of the central gelatinosa in the turtle spinal cord. J Comp Neurol 502:291–308

    Article  PubMed  Google Scholar 

  • Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F (2017) Gene expression profiling in the injured spinal cord of Trachemys scripta elegans: an amniote with self-repair capabilities. Front Mol Neurosci 10:17. https://doi.org/10.3389/fnmol.2017.00017

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigh B, Vigh-Teichmann I (1998) Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech 41:57–83

    Article  CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I, Aros B (1977) Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord. Cell Tissue Res 183:541–552

    Article  CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I, Manzano e Silva MJ, van den Pol AN (1983) Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in various vertebrates. Cell Tissue Res 231:615–621

    Article  CAS  PubMed  Google Scholar 

  • Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal. Arch Histol Jap 46:427–468

    Article  CAS  PubMed  Google Scholar 

  • Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  CAS  PubMed  Google Scholar 

  • Webb SE, Moreau M, Leclerc C, Miller AL (2005) Calcium transients and neural induction in vertebrates. Cell Calcium 37:375–385

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    CAS  PubMed  Google Scholar 

  • Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    Article  CAS  PubMed  Google Scholar 

  • Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 206:344–347

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  CAS  PubMed  Google Scholar 

  • Yu K, McGlynn S, Matise MP (2013) Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 140:1594–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Clarke JDW, Ferretti P (2000) FGF-2 up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo. Dev Biol 225:381–391

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflügers Arch 452:573–588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grant FCE 103356 from ANII and grant #167 from Wings for Life Spinal Cord Research Foundation to RER. The authors would like to thank the kind donation of GATA3-GFP transgenic mice by Dr. Stavros Malas, The Cyprus Institute of Neurology and Genetics, Cyprus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl E. Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marichal, N., Reali, C., Trujillo-Cenóz, O., Russo, R.E. (2017). Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche. In: Birbrair, A. (eds) Stem Cell Microenvironments and Beyond. Advances in Experimental Medicine and Biology, vol 1041. Springer, Cham. https://doi.org/10.1007/978-3-319-69194-7_5

Download citation

Publish with us

Policies and ethics