Current Technologies Based on the Knowledge of the Stem Cells Microenvironments

  • Damia Mawad
  • Gemma Figtree
  • Carmine GentileEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1041)


The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.


Stem cell niche Microenvironment In vitro 3D models Organoids Bioprinting Tissue fabrication 


  1. Adriani G, Ma D, Pavesi A, Kamm RD, Goh EL (2016) A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17(3):448–459CrossRefGoogle Scholar
  2. Alperin C, Zandstra PW, Woodhouse KA (2005) Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 26:7377–7386PubMedCrossRefGoogle Scholar
  3. Arshi A, Nakashima Y, Nakano H, Eaimkhong S, Evseenko D, Reed J, Stieg AZ, Gimzewski JK, Nakano A (2013) Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Sci Technol Adv Mater 14(2):025003PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baraniak PR, Cooke MT, Saeed R, Kinney MA, Fridley KM, Mcdevitt TC (2012) Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater 11:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  5. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26:6194–6207PubMedCrossRefGoogle Scholar
  6. Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC, Choe Y, Prantil-Baun R, Weaver JC, Bahinski A, Parker KK, Ingber DE (2016) Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 3:456–466 e4PubMedCrossRefGoogle Scholar
  7. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772PubMedCrossRefGoogle Scholar
  8. Bini T, Gao S, Wang S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegrad-able microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453CrossRefGoogle Scholar
  9. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919PubMedCrossRefGoogle Scholar
  10. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:9135–9144PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bratt-Leal AM, Carpenedo RL, Mcdevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bredenoord AL, Clevers H, Knoblich JA (2017) Human tissues in a dish: the research and ethical implications of organoid technology. Science 355:6322. pii: eaaf9414Google Scholar
  13. Burgel SC, Diener L, Frey O, Kim JY, Hierlemann A (2016) Automated, multiplexed electrical impedance spectroscopy platform for continuous monitoring of microtissue spheroids. Anal Chem 88:10876–10883PubMedCrossRefGoogle Scholar
  14. Carpenedo RL, Bratt-Leal AM, Marklein RA, Seaman SA, Bowen NJ, Mcdonald JF, Mcdevitt TC (2009) Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30:2507–2515PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen Y, Wang J, Shen B, Chan CW, Wang C, Zhao Y, Chan HN, Tian Q, Chen Y, Yao C, Hsing IM, Li RA, Wu H (2015) Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs). Macromol Biosci 15:426–436PubMedCrossRefGoogle Scholar
  16. Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178PubMedCrossRefGoogle Scholar
  17. Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One 5:e15655PubMedPubMedCentralCrossRefGoogle Scholar
  18. Christoffersson J, Bergstrom G, Schwanke K, Kempf H, Zweigerdt R, Mandenius CF (2016) A microfluidic bioreactor for toxicity testing of stem cell derived 3D cardiac bodies. Methods Mol Biol 1502:159–168PubMedCrossRefGoogle Scholar
  19. Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 4:156–164PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cozzolino AM, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, Tripodi M, Amicone L (2016) Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int 2016:5481493PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dalby MJ, Gadegaard N, Oreffo RO (2014) Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater 13:558–569PubMedCrossRefGoogle Scholar
  22. Dee KC, Puleo DA, Bixios R (2003) Protein–surface interactions. An introduction to tissue-biomaterial interactions. Wiley, New YorkGoogle Scholar
  23. Dennis SG, Trusk T, Richards D, Jia J, Tan Y, Mei Y, Fann S, Markwald R, Yost M (2015) Viability of bioprinted cellular constructs using a three dispenser cartesian printer. J Vis Exp 103:53156.Google Scholar
  24. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45PubMedGoogle Scholar
  25. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  26. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370PubMedCrossRefGoogle Scholar
  27. Figtree GA, Bubb KJ, Tang O, Kizana E, Gentile C Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis. Cells Tissues Organs 204:3Google Scholar
  28. Fleming PA, Argraves WS, Gentile C, Neagu A, Forgacs G, Drake CJ (2010) Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev Dyn 239:398–406PubMedPubMedCentralCrossRefGoogle Scholar
  29. Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250PubMedCrossRefGoogle Scholar
  30. Gentile C (2016) Filling the gaps between the in vivo and in vitro microenvironment: engineering of spheroids for stem cell technology. Curr Stem Cell Res Ther 11:652–665PubMedCrossRefGoogle Scholar
  31. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35PubMedCrossRefGoogle Scholar
  32. Gonzalez F (2016) CRISPR/Cas9 genome editing in human pluripotent stem cells: harnessing human genetics in a dish. Dev Dyn 245:788–806PubMedCrossRefGoogle Scholar
  33. Guidi N, Geiger H (2017) Rejuvenation of aged hematopoietic stem cells. Semin Hematol 54:51–55PubMedCrossRefGoogle Scholar
  34. Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 2016:9098523PubMedPubMedCentralCrossRefGoogle Scholar
  35. He Y, Lu F (2016) Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int 2016:5786257PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57PubMedCrossRefGoogle Scholar
  37. Huang F, Shen Q, Zhao J (2013) Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold. Neural Regen Res 8:313–319PubMedPubMedCentralGoogle Scholar
  38. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668PubMedCrossRefGoogle Scholar
  39. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157PubMedCrossRefGoogle Scholar
  40. Hui EE, Bhatia SN (2007) Micromechanical control of cell-cell interactions. Proc Natl Acad Sci U S A 104:5722–5726PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hunsberger J, Harrysson O, Shirwaiker R, Starly B, Wysk R, Cohen P, Allickson J, Yoo J, Atala A (2015) Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 4:130–135PubMedPubMedCentralCrossRefGoogle Scholar
  42. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95PubMedPubMedCentralGoogle Scholar
  43. Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA (2015) Hierarchical micro-nano surface topography promotes long-term maintenance of undifferentiated mouse embryonic stem cells. Nano Lett 15:7146–7154PubMedCrossRefGoogle Scholar
  44. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jakobsson A, Ottosson M, Zalis MC, O’carroll D, Johansson UE, Johansson F (2017) Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds. Nanomedicine 13(4):1563–1573PubMedCrossRefGoogle Scholar
  46. Jin G, Li K (2014) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C Mater Biol Appl 45:671–681PubMedCrossRefGoogle Scholar
  47. Kamble H, Barton MJ, Jun M, Park S, Nguyen NT (2016) Cell stretching devices as research tools: engineering and biological considerations. Lab Chip 16:3193–3203PubMedCrossRefGoogle Scholar
  48. Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154CrossRefGoogle Scholar
  49. Kohen NT, Little LE, Healy KE (2009) Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79PubMedCrossRefGoogle Scholar
  50. Kramer M, Chaudhuri JB, Ellis MJ (2011) Promotion of neurite outgrowth in corporation poly-l-lysine into aligned PLGA nanofiber scaffolds. Eur Cell Mater 22:53Google Scholar
  51. Kumar D, Dale TP, Yang Y, Forsyth NR (2015) Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomed Mater 10:065017PubMedCrossRefGoogle Scholar
  52. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519:410–411PubMedCrossRefGoogle Scholar
  53. Lee ST, Yun JI, Jo YS, Mochizuki M, Van der Vlies AJ, Kontos S, Ihm JE, Lim JM, Hubbell JA (2010) Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31:1219–1226PubMedCrossRefGoogle Scholar
  54. Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1–5PubMedCrossRefGoogle Scholar
  55. Liang Y, Walczak P, Bulte JW (2013) The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials 34:5521–5529PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK (2016) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16(3):303–308PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lohmueller JJ, Armel TZ, Silver PA (2012) A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res 40:5180–5187PubMedPubMedCentralCrossRefGoogle Scholar
  59. Marban E, Cingolani E (2012) Heart to heart: cardiospheres for myocardial regeneration. Heart Rhythm 9:1727–1731PubMedCrossRefGoogle Scholar
  60. Marsano A, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, Vunjak-Novakovic G (2010) Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnol Prog 26:1382–1390PubMedPubMedCentralCrossRefGoogle Scholar
  61. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716PubMedPubMedCentralCrossRefGoogle Scholar
  62. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262PubMedGoogle Scholar
  63. Mawad D, Martens PJ, Odell RA, Poole-Warren LA (2007) The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels. Biomaterials 28:947–955PubMedCrossRefGoogle Scholar
  64. Mawad D, Boughton EA, Boughton P, Lauto A (2012) Advances in hydrogels applied to degenerative diseases. Curr Pharm Des 18:2558–2575PubMedCrossRefGoogle Scholar
  65. Mckinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1:460–469CrossRefGoogle Scholar
  66. Mcmurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, Mcnamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10:637–644PubMedCrossRefGoogle Scholar
  67. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921PubMedCrossRefGoogle Scholar
  68. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161PubMedCrossRefGoogle Scholar
  69. Moshayedi P, Carmichael ST (2013) Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter 3(1):e23863PubMedPubMedCentralCrossRefGoogle Scholar
  70. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785PubMedCrossRefGoogle Scholar
  71. Murphy KC, Fang SY, Leach JK (2014a) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99PubMedPubMedCentralCrossRefGoogle Scholar
  72. Murphy WL, Mcdevitt TC, Engler AJ (2014b) Materials as stem cell regulators. Nat Mater 13:547–557PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290PubMedCrossRefGoogle Scholar
  74. Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul TM, Huard J, Wagner WR, Vorp DA (2010) In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16:1215–1223PubMedPubMedCentralCrossRefGoogle Scholar
  75. Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, Mclamb W, Platt V, Bridges R, Cai Y, Santhanam N, Berry B, Najjar S, Akanda N, Guo X, Martin C, Ekman G, Esch MB, Langer J, Ouedraogo G, Cotovio J, Breton L, Shuler ML, Hickman JJ (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030PubMedPubMedCentralCrossRefGoogle Scholar
  76. Passier R, Orlova V, Mummery C (2016) Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18:309–321PubMedCrossRefGoogle Scholar
  77. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25:1761–1768PubMedCrossRefGoogle Scholar
  78. Polonchuk L, Chabria M, Badi L, Hoflack J-C, Figtree G, Davies MJ, Gentile C (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7(1):7005PubMedPubMedCentralCrossRefGoogle Scholar
  79. Preston M, Sherman LS (2011) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179CrossRefGoogle Scholar
  80. Purcell O, Lu TK (2014) Synthetic analog and digital circuits for cellular computation and memory. Curr Opin Biotechnol 29:146–155PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE (2016) Cardiac non-myocyte cells show enhanced pharmacological function suggestive of contractile maturity in stem cell derived cardiomyocyte microtissues. Toxicol Sci 152:99–112PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5:28–41PubMedPubMedCentralCrossRefGoogle Scholar
  83. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336PubMedCrossRefGoogle Scholar
  84. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, Van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658PubMedCrossRefGoogle Scholar
  86. Shim J, Grosberg A, Nawroth JC, Parker KK, Bertoldi K (2012) Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. J Biomech 45:832–841PubMedPubMedCentralCrossRefGoogle Scholar
  87. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31:448–452PubMedCrossRefGoogle Scholar
  88. Soleimani M, Nadri S, Shabani I (2010) Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Int J Dev Biol 54:1295–1300PubMedCrossRefGoogle Scholar
  89. Sperling LE, Reis KP, Pozzobon LG, Girardi CS, Pranke P (2017) Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 105(5):1333–1345PubMedCrossRefGoogle Scholar
  90. Stewart E, Kobayashi NR, Higgins MJ, Quigley AF, Jamali S, Moulton SE, Kapsa RM, Wallace GG, Crook JM (2015) Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods 21:385–393PubMedCrossRefGoogle Scholar
  91. Sardo VL, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A (2016) Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 35(1):69–74PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sun Y, Ding Q (2017) Genome engineering of stem cell organoids for disease modeling. Protein Cell 8(5):315–327PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tan Y, Richards D, Coyle RC, Yao J, Xu R, Gou W, Wang H, Menick DR, Tian B, Mei Y (2017) Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater 51:495–504PubMedCrossRefGoogle Scholar
  94. Thavandiran N, Dubois N, Mikryukov A, Masse S, Beca B, Simmons CA, Deshpande VS, Mcgarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110:E4698–E4707PubMedPubMedCentralCrossRefGoogle Scholar
  95. Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11:663–669PubMedCrossRefGoogle Scholar
  96. Tsou YH, Khoneisser J, Huang PC, Xu X (2016) Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Mater 1:39–55CrossRefGoogle Scholar
  97. Vallier L, Pedersen RA (2005) Human embryonic stem cells: an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev 1:119–130PubMedCrossRefGoogle Scholar
  98. Van der Helm MW, Van der Meer AD, Eijkel JC, Van den Berg A, Segerink LI (2016) Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4:e1142493PubMedPubMedCentralCrossRefGoogle Scholar
  99. Van der Meer AD, Van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4:461–470CrossRefGoogle Scholar
  100. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583PubMedPubMedCentralCrossRefGoogle Scholar
  101. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409–420PubMedPubMedCentralCrossRefGoogle Scholar
  102. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemBook, Cambridge, MAGoogle Scholar
  103. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Engineering stem cell organoids. Cell Stem Cell 18:25–38PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yuan N, Tian W, Sun L, Yuan R, Tao J, Chen D (2014) Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res 9:1014–1019PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18:618–623PubMedCrossRefGoogle Scholar
  106. Zhang C, Zhao Z, Abdul Rahim NA, Van Noort D, Yu H (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185–3192PubMedCrossRefGoogle Scholar
  107. Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT (2010) Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 10:1456–1464PubMedCrossRefGoogle Scholar
  108. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Science, School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Sydney Medical School, University of SydneySydneyAustralia
  3. 3.Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations