Advertisement

Fetal Membranes-Derived Stem Cells Microenvironment

  • Phelipe Oliveira Favaron
  • Maria Angelica MiglinoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1041)

Abstract

Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.

Keywords

Yolk sac Amnion Amniotic membrane Mesenchymal stem cells Extracellular matrix Cell therapy 

Notes

Acknowledgments

The authors thank the several members from the School of Veterinary Medicine and Animal Science, University of Sao Paulo-USP, for collaboration and technical assistance.

References

  1. Antonucci I, Pantalone A, Tete S, Salini V, Borlongan CV, Hess D, Stuppia L (2012) Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 18:1846–1863CrossRefPubMedGoogle Scholar
  2. Arenas LAS, Zurbarán CB (2002) La Matriz Extracelular: El Ecossistema de la Célula. Salud Uninorte 16:9–18Google Scholar
  3. Auerbach R, Huang H, Lu L (1996) Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cells 14:269–280CrossRefPubMedGoogle Scholar
  4. Auerbach R, Wang SJ, Yu D, Gilligan B, Lu LS (1998) Role of endothelium in the control of mouse yolk sac stem cells differentiation. Dev Comp Immunol 22:333–338CrossRefPubMedGoogle Scholar
  5. Avasthi S, Srivastava RN, Singh A, Srivastava M (2008) Stem cell: past, present and future—a review article. Internet J Med Update 3:22–30Google Scholar
  6. Barboni B, Russo V, Curini V, Martelli A, Berardinelli P, Mauro A, Mattioli M, Marchisio M, Signoroni PB, Parolini O, Colosimo A (2014) Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties. Stem Cell Rev 10:725–741CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertin E, Piccoli M, Franzin C, Spiro G, Donà S, Dedja A, Schiavi F, Taschin E, Bonaldo P, Braghetta P, De Coppi P, Pozzobon M (2016) First steps to define murine amniotic fluid stem cell microenvironment. Sci Rep 6:37080CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44:215–230PubMedGoogle Scholar
  9. Borghesi J, Mario LC, Carreira AC, Miglino MA, Favaron PO (2017) Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther 8(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown BN, Barnes CA, Kasick RT, Michel R, Gilbert TW, Beer-Stolz D, Castner DG, Ratner BD, Badylak SF (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31(3):428–437CrossRefPubMedGoogle Scholar
  11. Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsu LF, Hsu LW, Tsai MS (2010) Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells Tissues Organs 192:93–105CrossRefPubMedGoogle Scholar
  12. Choi JS, Kim JD, Yoon HS, Cho YW (2013) Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A 19(3–4):329–339CrossRefPubMedGoogle Scholar
  13. Cremonesi F, Corradetti B, Lange-Consiglio A (2011) Fetal adnexa derived stem cells from domestic animals: progress and perspectives. Theriogenology 75:1400–1415CrossRefPubMedGoogle Scholar
  14. Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Rendal Vázquez ME, Fuentes-Boquete I, De Toro FJ, Blanco FJ (2011) Stem cells from human amniotic membrane. Tissue Eng: Part C 17:49–59CrossRefGoogle Scholar
  15. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefPubMedGoogle Scholar
  16. Favaron PO, Carter AM, Mess AM, Oliveira MF, Miglino MA (2012) An unusual feature of yolk sac placentation in Necromys lasiurus (Rodentia, Cricetidae, Sigmodontinae). Placenta 33:578–580CrossRefPubMedGoogle Scholar
  17. Favaron PO, Mess A, Will SE, Maiorka PC, de Oliveira MF, Miglino MA (2014) Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus) with multipotent differential potential. PLoS One 9:e95575CrossRefPubMedPubMedCentralGoogle Scholar
  18. Favaron PO, Carvalho RC, Borghesi J, Anunciação AR, Miglino MA (2015) The amniotic membrane: development and potential applications—a review. Reprod Domest Anim 50(6):881–892CrossRefPubMedGoogle Scholar
  19. Favaron PO, Borghesi J, Mess AM, Castelucci P, Miglino MA (submitted) Establishment of three-dimensional scaffolds from hemochorial placentas. PLoS OneGoogle Scholar
  20. Fernandes RA, Costola-Souza C, Sarmento CAP, Gonçalves L, Favaron PO, Miglino MA (2012) Placental tissues as sources of stem cells—review. OJAS 2:166–173CrossRefGoogle Scholar
  21. Fratini P, Carreira AC, Alcântara D, de Oliveira e Silva FM, Rodrigues MN, Miglino MA (2016) Endothelial differentiation of canine yolk sac cells transduced with VEGF. Res Vet Sci 104:71–76CrossRefPubMedGoogle Scholar
  22. Globerson A, Woods V, Abel L, Morrissey L, Cairns JS, Kukulansky T, Kubai L, Auerbach R (1987) In vitro differentiation of mouse embryonic yolk sac cells. Differentiation 36:185–193CrossRefPubMedGoogle Scholar
  23. Gupta BD (2009) An introduction to stem cells and debate surrounding them. J Indian Acad Forensic Med 31:3Google Scholar
  24. Huang H, Auerbach R (1993) Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo. Proc Natl Acad Sci 90:10110–10114CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hyttel P, Sinowatz F, Vejlsted M (2010) Essentials of domestic animal embryology. Saunders Elsevier, Toronto, p 455Google Scholar
  26. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci 89:1452–1458CrossRefGoogle Scholar
  27. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biol Reprod 77:577–588CrossRefPubMedGoogle Scholar
  28. In ‘t Anker PS, Scherjon SA, Kleijburg-Van Der Keur C, De Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345CrossRefPubMedGoogle Scholar
  29. Insausti CL, Alcaraz A, Garcia-Vizcaino EM, Mrowiec A, López-Martínez MC, Blanquer M, Piñero A, Majado MJ, Moraleda JM, Castellanos G, Nicolás FJ (2010) Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair Regen 18:368–377CrossRefPubMedGoogle Scholar
  30. Jafredo T, Bollerot K, Sugiyama DG, Drevon C (2005) Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. Int J Dev Biol 49:269–277CrossRefGoogle Scholar
  31. Kakishita K, Nakao N, Sakuragawa N, Itakura T (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56CrossRefPubMedGoogle Scholar
  32. Kim EY, Lee KB, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 47:135–140CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, Parolini O, Cremonesi F (2012) Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med 6:622–635CrossRefPubMedGoogle Scholar
  34. Lobo SE, Leonel LC, Miranda CM, Coelho TM, Ferreira GA, Mess A, Abrão MS, Miglino MA (2016) The placenta as an organ and a source of stem cells and extracellular matrix: a review. Cells Tissues Organs 201:239–252CrossRefPubMedGoogle Scholar
  35. Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914CrossRefPubMedGoogle Scholar
  36. Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mançanares CA, Leiser R, Favaron PO, Carvalho AF, Oliveira VC, Santos JM, Ambrósio CE, Miglino MA (2013) A morphological analysis of the transition between the embryonic primitive intestine and yolk sac in bovine embryos and fetuses. Microsc Res Tech 76:756–766CrossRefPubMedGoogle Scholar
  38. Mançanares CA, Oliveira VC, Oliveira LJ, Carvalho AF, Sampaio RV, Mançanares AC, Souza AF, Perecin F, Meirelles FV, Miglino MA, Ambrósio CE (2015) Isolation and characterization of mesenchymal stem cells from the yolk sacs of bovine embryos. Theriogenology 84:887–898CrossRefPubMedGoogle Scholar
  39. Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76:130–144CrossRefPubMedGoogle Scholar
  40. Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1–5CrossRefPubMedGoogle Scholar
  41. Mauro A, Turriani M, Ioannoni A, Russo V, Martelli A, Di Giacinto O, Nardinocchi D, Berardinelli P (2010) Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun 34:S25–S28CrossRefPubMedGoogle Scholar
  42. Mossman HW (1987) Vertebrate fetal membranes: comparative ontogeny and morphology: evolution; phylogenetic significance: basic functions; research opportunities. The Macmillan, LondonGoogle Scholar
  43. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells byimmunofluorescence in term human amnion. J Reprod Immunol 75:91–6.Google Scholar
  44. Nakagawa S, Saburi S, Yamanouchi K, Tojo H, Tachi C (2000) In vitro studies on PGC or PGC-like cells in cultured yolk sac cells and embryonic stem cells of the mouse. Arch Histol Cytol 63:229–241CrossRefPubMedGoogle Scholar
  45. Nogami M, Kimura T, Seki S, Matsui Y, Yoshida T, Koike-Soko C, Okabe M, Motomura H, Gejo R, Nikaido T (2016) A human amnion-derived extracellular matrix-coated cell-free scaffold for cartilage repair: in vitro and in vivo studies. Tissue Eng Part A 22:680–688CrossRefPubMedGoogle Scholar
  46. Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29:927–936CrossRefPubMedGoogle Scholar
  47. Parolini O, Caruso M (2011) Review: Preclinical studies on placenta-derived cells and amniotic membrane. Placenta 25:186–195CrossRefGoogle Scholar
  48. Rutigliano L, Corradetti B, Valentini L, Bizarro D, Meucci A, Crempnesi F, Lange-Consiglio A (2013) Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther 4:133CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, Suzuki S (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 45:171–176CrossRefPubMedGoogle Scholar
  50. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17CrossRefPubMedGoogle Scholar
  51. Sheng G, Foley AC (2012) Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann N Y Acad Sci 1271:97–103CrossRefPubMedPubMedCentralGoogle Scholar
  52. Silva AC, Rodrigues SC, Caldeira J, Nunes AM, Sampaio-Pinto V, Resende TP, Oliveira MJ, Barbosa MA, Thorsteinsdóttir S, Nascimento DS, Pinto-do-Ó P (2016) Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials 104:52–64CrossRefPubMedGoogle Scholar
  53. Sugiyama D, Inoue-Yokoo T, Fraser ST, Kulkeaw K, Mizuochi C, Horio Y (2011) Embryonic regulation of the mouse hematopoietic niche. Sci World J 11:1770–1780CrossRefGoogle Scholar
  54. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736CrossRefPubMedGoogle Scholar
  55. Uranio MF, Valentini L, Lange-Consiglio A, Caira M, Guaricci AC, L’abbate A, Catachio CR, Ventura M, Cremonesi F, Dell’aquila ME (2011) Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adneza: a comparative study of amniotic fluid, amnion, and umbilical cord matriz. Mol Reprod Dev 78:361–373CrossRefGoogle Scholar
  56. Vidane AS, Souza AF, Sampaio RV, Bressan FF, Pieri NC, Martins DS, Meirelles FV, Miglino MA, Ambrósio CE (2014) Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cells Cloning 7:71–78PubMedPubMedCentralGoogle Scholar
  57. Vidani AS, Pinheiro AO, Casals JB, Passarelli D, Hage MCFNS, Bueno RS, Martins DS, Ambrósio CE(2016) Transplantation of amniotic membrane-derived multipotent cells ameliorates and delays the progression ofchronic kidney disease in cats. Reprod Dom Anim 51:1–11.Google Scholar
  58. Wang XY, Lan Y, He WY, Zhang L, Yao HY, Hou CM, Tong Y, Liu YL, Yang G, Liu XD, Yang X, Liu B, Mao N (2008) Identification of mesenchymal stem cells in aorta-ganad-mesonephrons and yolk sac of human embryos. Blood 111:2436–2443CrossRefPubMedGoogle Scholar
  59. Wenceslau CV, Miglino MA, Martins DS, Ambrósio CE, Lizier NF, Pignatari GC, Kerkis I (2011) Mesenchymal progenitor cells from canine fetal tissues: yolk sac, liver, and bone marrow. Tissue Eng Part A 17:2165–2176CrossRefPubMedGoogle Scholar
  60. Wilpshaar J, Bhatia M, Kanhai HH, Breese R, Heilman DK, Johnson CS, Falkenburg JH, Srour EF (2002) Engraftment potential of human fetal hematopoietic cells in NOD/SCID mice is not restricted to mitotically quiescent cells. Blood 100:120–127CrossRefPubMedGoogle Scholar
  61. Xiao-dong N, Mei-ling Z, Zi-ping Z, Wei-hua Y, Xiu-ming Z, Peng X, Shu-nong L (2003) Purification and adipogenic differentiation of human yolk sac mesenchymal stem cells. Chin J Pathophysiol 19:1316–1319Google Scholar
  62. Xiao-dong N, Wei-hua Y, Zi-ping Z, Mei-ling Z, Xiao-ying Z, Jun-xia L, Xin-min S, Chun-nong H, Xiu-ming Z, Yan L, Peng X, Shu-nong L (2005) Osteogenic and neurogenic differentiation of human yolk sac mesenchymal stem cells. Chin J Pathophysiol 21:636–641Google Scholar
  63. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158CrossRefPubMedGoogle Scholar
  64. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344CrossRefPubMedGoogle Scholar
  65. Zare S, Kurd S, Rostamzadeh A, Nilforoushzadeh MA (2014) Types of stem cells in regenerative medicine: a review. J Skin Stem Cell 1:e28471Google Scholar
  66. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841CrossRefPubMedGoogle Scholar
  67. Zhao ZP (2003) Investigation of murine yolk sac multipotent mesenchymal stem cells combined with collagen surface-modified CPC in vitro. PhD Thesis, Central South University, ChinaGoogle Scholar
  68. Zhao ZP, Na XD, Yang HF, Zhou JN (2002) Osteogenic differentiation of murine yolk sac mesenchymal stem cells in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 24:41–44PubMedGoogle Scholar
  69. Zhu X, Wang X, Cao G, Liu F, Yang Y, Li X, Zhang Y, Mi Y, Liu J, Zhang L (2013) Stem cell properties and neural differentiation of sheep amniotic epithelial cells. Neural Regen Res 8:1210–1219PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Phelipe Oliveira Favaron
    • 1
  • Maria Angelica Miglino
    • 1
    Email author
  1. 1.Surgery DepartmentSchool of Veterinary Medicine and Animal Science, University of Sao PauloSao PauloBrazil

Personalised recommendations