Skip to main content

Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem

  • Chapter
  • First Online:
Nonregular Nanosystems

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 26))

Abstract

This chapter introduces the reader to the analysis of the structural and electronic system properties of various carbon allotropes (CNT, graphene) and several molecular derivatives. The genesis of the electronic system formation is investigated in detail. Non-regular defected nanocarbon systems are considered for possible applications in different fields, including energy storage; chemical, biochemical and electrochemical sensing; water purification; and catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch A 2010 The era of carbon allotropes Nature materials 4 868–70

    Google Scholar 

  2. Greenville Whittaker A 1978 The controversial carbon solid-liquid-vapour triple point Nature 276(5689) 695–6

    Article  Google Scholar 

  3. Shenderova O A, Zhirno V V, Brenner D W 2002 Carbon Nanostructures Critical Reviews in Solid State and Materials Sciences 27(3/4) 227–356

    Google Scholar 

  4. Cambridge Structural Database 2016 https://www.ccdc.cam.ac.uk/structures-beta/, retrieved 2016–10-14

  5. Crystallography Open Database 2016 http://www.crystallography.net, accessed 2016 10 02

  6. Straumanis M E, Aka E Z 1951 Precision determination of lattice parameter, coefficient of thermal expansion and atomic weight of carbon in diamond J. Am. Chem. Soc. 73 5643–6

    Article  Google Scholar 

  7. Simpson C D, Brand J D, Berresheim A J, Przybilla L, Räder H J, Müllen K 2002 Synthesis of a Giant 222 Carbon Graphite Sheet Chemistry 6(6) 1424–9

    Google Scholar 

  8. Cooper D R, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V 2012 Experimental Review of Graphene ISRN Condensed Matter Physics International Scholarly Research Network 2012 1–56

    Google Scholar 

  9. Singh S B, Singh A 2002 The Third Allotrope of Carbon: Fullerene an Update International Journal of ChemTech Research 5(1) 167–71

    Google Scholar 

  10. Qiao R, Roberts A P, Mount A S, Klaine S, J, Ke P C 2007 Translocation of C60 and Its Derivatives Across a Lipid Bilayer Nano Letters 7(3) 614–9

    Google Scholar 

  11. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Ha-nifehpour Y, Joo S W 2014 Carbon nanotubes: properties, synthesis, purification, and medical applications Nanoscale Research Letters 9 393

    Article  ADS  Google Scholar 

  12. Tersoff J, Ruoff R S 1994 Structural Properties of a Carbon-Nanotube Crystal Physical Review Letters 73(5) 676–9

    Article  ADS  Google Scholar 

  13. Veiga R G A, Tomanek D, Frederick N 2008 Carbon nanotube generation applet, http://www.nanotube.msu.edu/tubeASP/, accessed 2016 08 16

  14. Terrones M 2003 Science and technology of the twenty-first century: synthesis, proper types, and applications of carbon nanotubes Annu. Rev. Mater. Res. 33 419–501

    Article  ADS  Google Scholar 

  15. Gaussian 09, Revision D.01 2013 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian, Inc., Wallingford CT.

    Google Scholar 

  16. Wang C M, Zhang Y Y, Xiang Y, Reddy J N 2010 Recent Studies on Buckling of Carbon Nanotubes Appl. Mech. Rev. 63(3) 030804

    Article  ADS  Google Scholar 

  17. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Ultrahigh electron mobility in suspended graphene Solid State Communications 146 351–5

    Article  ADS  Google Scholar 

  18. Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Unconventional quantum Hall effect and Berry’s phase of 2pi in bilayer graphene Nature Physics 2 177–80

    Article  ADS  Google Scholar 

  19. Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Electronic structure of chiral graphene tubules Appl. Phys. Lett. 60 2204–6

    Article  ADS  Google Scholar 

  20. Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Electronic structure of graphene tubules based on C60 Phys. Rev. B 46 1804–11

    Article  ADS  Google Scholar 

  21. Minot E D, Yaish Y, Sazonova V, McEuen P L 2004 Determination of electron orbital magnetic moments in carbon nanotubes Nature 428 536–9

    Article  ADS  Google Scholar 

  22. Ramirez A P, Haddon R C, Zhou O, Fleming R M, Zhang J, McClure S M, Smalley R E 1994 Magnetic susceptibility of molecular carbon: nanotubes and fullerite Science 265 84–6

    Article  ADS  Google Scholar 

  23. Wang J, Jiang W, Wang B, Gao Y, Wang Z, Zhang R Q 2016 Chirality dependent spin polarization of carbon nanotubes New J. Phys. 18 023029

    Article  ADS  Google Scholar 

  24. Jespersen T S, Grove-Rasmussen K, Paaske J, Muraki K, Fujisawa T, Nygard J, Flensberg K 2011 Gate-dependent spin–orbit coupling in multielectron carbon nanotubes Nature Physics 7 348–53

    Article  ADS  Google Scholar 

  25. Wang B, Wang J 2010 First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes Physical Review B 81 045425

    Google Scholar 

  26. Miyauchi Y, Oba M, Maruyama S 2006 Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy Physical Review B 74 205440

    Google Scholar 

  27. Iakoubovskii N, Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B 2006 Midgap luminescen-ce centers in single-wall carbon nanotubes created by ultraviolet illumination Applied physics letters 89 173108

    Article  ADS  Google Scholar 

  28. Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Electronic structure of atomically resolved carbon nanotubes Nature 391 59–62

    Google Scholar 

  29. Odom T W, Huang J L, Kim P, Lieber C M 1998 Atomic structure and electronic properties of single-walled carbon nanotubes Nature 391 62–4

    Google Scholar 

  30. Luo C, Xie H, Wang Q, Luo G, Liu C 2015 A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells Journal of Nanomaterials 2015 560392

    Google Scholar 

  31. Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P 2005 Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells Langmuir 21(18) 8487–94

    Article  Google Scholar 

  32. Berkovic G, Krongauz V, Weiss V 2000 Spiropyrans and Spirooxazines for Memories and Swi-tches Chem. Rev. 100 1741–53

    Article  Google Scholar 

  33. Madani S Y, Mandel A, Seifalian A A 2013 A concise review of carbon nanotube’s toxicology Nano Rev. 4(10) 21521(1–14)

    Google Scholar 

  34. Rajasekaran G, Narayanan P, Parashar A 2016 Effect of Point and Line Defects on Mechanical and Thermal Properties of Graphene: A Review Critical Reviews in Solid State and Materials Sciences 41(1) 47–71

    Article  ADS  Google Scholar 

  35. Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P, Nieminen R M 2009 Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism Phys. Rev. Lett. 102 12680

    Google Scholar 

  36. Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Effect of defects on fracture strength of graphene sheets Comput.Mater.Sci. 54 236–9

    Article  Google Scholar 

  37. Zandiatashbar A, Lee G H, An S J, Lee S, Mathew N, Terroness M, Hayashi T, Picu C R, Hone J, Koratkar N 2014 Effect of defects on the intrinsic strength and stiffness of graphene Nat. Commun. 5 3186

    Google Scholar 

  38. Wang M C, Yan C, Galpaya D, Zheng B L, Ma L, Hu N, Yuan Q, Bai R, Zhou L 2013 Molecular dynamics simulation of fracture strength and morphology of defective graphene J.Nano Res. 23 43–9

    Article  Google Scholar 

  39. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D,Feng M, Lau C N 2008 Superior thermal conductivity of single-layer graphene Nano Lett. 8, 902–7

    Google Scholar 

  40. Baimova J A, Bo L, Dmitriev S V, Zhou K, Nazarov A A 2013 Effect of Stone-Thrower-Wales defect on structural stability of graphene at zero and finite temperature EPL 103 46001

    Google Scholar 

  41. Xiao L, Thomas H M, Robinson J T, Houston B H, Scarpa F 2012 Shear modulus of monolayer graphene prepared by chemical vapor deposition Nano Lett. 12 1013–7

    Article  ADS  Google Scholar 

  42. Gillen R, Mohr M, Maultzsch J 2010 Raman-active modes in graphene nanoribbons Phys. Status Solidi B 247 2941–4

    Google Scholar 

  43. Bosak A, Krisch M, Mohr M, Maultzsch J, Thomsen C 2007 Elasticity of single-crystalline graphite: Inelastic x-ray scattering study Phys. Rev. B Condens. Matter 75 153408

    Google Scholar 

  44. Dmitrriev S V, Baimoya J A, Savin A V, Kivshar Y S 2012 Ultimate strength, ripples, sound velocities, and density of phonon states of strained graphene Comput. Mater. Sci. 53 194–203

    Article  Google Scholar 

  45. Zakharchenko K V, Los J H, Katsnelson M I, Fasolino A 2010 Atomistic simulations of structural and thermodynamic properties of bilayer graphene Phys. Rev. B Condens. Matter 81 235439(1–6)

    Google Scholar 

  46. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S 2010 Graphene and graphene oxide: synthesis, properties and applications Adv. Mater. 22 3906–24

    Article  Google Scholar 

  47. Edwards R S, Coleman K S 2013 Graphene synthesis: relationship to applications Nanoscale 5 38–51

    Article  ADS  Google Scholar 

  48. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Ultrahigh electron mobility in suspended graphene Solid State Commun. 146 351–5

    Article  ADS  Google Scholar 

  49. Taghioskoui M 2009 Trends in graphene research Mater. Today 12 34–7

    Article  Google Scholar 

  50. Geim K 2009 Graphene: status and prospects Science 324 1530–4

    Article  ADS  Google Scholar 

  51. Garg R, Dutta N K, Choudhuri N R 2014 Work function engineering of graphene Nanomaterials 4 267–300

    Article  Google Scholar 

  52. Araujo P T, Terrones M, Dresselhaus M S 2012 Defects and impurities in graphene-like materials Mater. Today 15(3) 98–109

    Article  Google Scholar 

  53. Liu L, Qing M, Wang Y, Chen S 2015 Defects in graphene: generation, healing, and their effects on the properties of graphene: a review J. Mater. Sci. Technol. 31 599–606

    Article  ADS  Google Scholar 

  54. Zhang T, Li X, Gao H 2014 Designing graphene structure with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga Extreme Mech. Lett. 1 3–8

    Article  Google Scholar 

  55. Robertson W, Warner J H 2013 Atomic resolution imaging of graphene by transmission electron microscopy Nanoscale Res. Lett. 5 4079–93

    Google Scholar 

  56. Xu L, Wei N, Zheng Y 2013 Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture Nanotechnology 24 505703

    Article  ADS  Google Scholar 

  57. Sun S, Wang C, Chen M, Zheng J 2013 A novel method to control atomic defects in graphene sheets, by selective surface reactions Appl. Surf. Sci. 283 566–70

    Article  ADS  Google Scholar 

  58. Liu J, Liu Z, Barrow C J, Yang W 2015 Molecularly engineered graphene surfaces for sensing applications: A review Anal. Chim. Acta 859 1–19

    Article  ADS  Google Scholar 

  59. Yadav S, Zhu Z, Singh C V 2014 Defect engineering of graphene for effective hydrogen storage Int. J. Hydrog. Ener. 39 4981–95

    Article  Google Scholar 

  60. Terrones M, Botello-Mendez A R, Campos-Delgado J, Lopez-Urias F, Vega-Cantu Y I, Rodriguez-Macias F J, Elias A. L, Munoz-Sandoval E, Cano-Marquez A G, Charlier J C, Terrones H 2010 Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today 5 351–72

    Article  Google Scholar 

  61. Liu X Y, Zhang J M, Xu K W, Ji V 2014 Improving SO2 gas sensing properties of graphene by introducing dopant and defect: A first-principles study Appl. Surf. Sci. 313 405–10

    Article  ADS  Google Scholar 

  62. Li T, Tang X, Liu Z, Zhang P 2011 Effect of intrinsic defects on electronic structure of bilayer graphene: First-principles calculations Physica E 43 1597–601

    Google Scholar 

  63. Bitzek E, Gumbsch P 2013 Mechanisms of dislocation multiplication at crack tips Acta Mater. 61 1394–403

    Article  Google Scholar 

  64. Bonilla L L, Carpio A 2012 Driving dislocations in graphene Science 337 161–2

    Article  ADS  Google Scholar 

  65. Yazyev O V, Louie S G 2010 Topological defects in graphene: Dislocations and grain boundaries Phys. Rev. B Condens. Matter 81 195420

    Google Scholar 

  66. Mohammadi N, Adeh N B, Najafi M 2016 Synthesis and characterization of highly defective mesoporous carbon and its potential use in electrochemical sensors RSC Adv. 6(40) 33419–25

    Article  Google Scholar 

  67. Huang H, Ying Y, Peng X 2014 Graphene oxide nanosheet: an emerging star material for novel separation membranes J. Mater. Chem. A 2 13772–82

    Google Scholar 

  68. Nishihara H, Kyotani T Templated nanocarbons for energy storage 2012 Adv. Mater. 24, 4473–98

    Article  Google Scholar 

  69. Zhou M, Guo S 2015 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors ChemCatChem 7(18) 2744–64

    Article  Google Scholar 

  70. Zhai Y, Zhu Z, Dong S 2015 Carbon-Based Nanostructures for Advanced Catalysis ChemCatChem 7 2806–15

    Article  Google Scholar 

  71. Vicarelli L, Heerema S J, Dekker C, Zandbergen H W 2015 Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices AcsNano 9 3428–35

    Google Scholar 

  72. Lim D H, Wilcox J 2012 Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles J. Phys. Chem. C 116 3653–60

    Google Scholar 

  73. Zhong J H, Zhang J, Jin X, Liu J Y, Li Q, Li M H, Cai W, Wu D Y, Zhan D, Ren B 2014 Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene J.Am Chem. Soc 136 16609–17

    Google Scholar 

  74. Kamiya K, Hashimoto K, Nakanishi S 2014 Graphene Defects as Active Catalytic Sites that are Superior to Platinum Catalysts in Electrochemical Nitrate Reduction ChemElectroChem 1 858–62

    Article  Google Scholar 

  75. Ren T Z, Liu L, Zhang Y, Yuan Z Y 2013 Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst J Solid State Electrochem 17 927–35

    Article  Google Scholar 

  76. Hosseinia H, Behbahania M, Mahyaria M, Kazeroonib H, Bagheria A, Shaabania A 2014 Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide Biosensors and Bioelectronics 59 412–7

    Article  Google Scholar 

  77. Liu Y, Lia Y, He X 2014 In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine Anal. Chim. Acta 819 26–33

    Article  Google Scholar 

  78. Gadipelli S, Guo Z X 2015 Graphene-based materials: Synthesis and gas sorption, storage and separation Progress in Materials Science 69 1–60

    Article  Google Scholar 

  79. Zuttel A, Sudan P, Mauron P, Wenger P 2004 Model for the hydrogen adsorption on carbon nanostructures Appl Phys A 78 941–6

    Google Scholar 

  80. Burress J W, Gadipelli S, Ford J, Simmons J M, Zhou W, Yildirim T 2010 Graphene oxide framework materials: theoretical predictions and experimental results Angew Chem Int Ed 49 8902–4

    Article  Google Scholar 

  81. Kubas J 2001 Metal-dihydrogen and r-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin p bonding J Organomet Chem 635 37–68

    Article  Google Scholar 

  82. Hussain T, Pathak B, Ramzan M, Maark TA, Ahuja R 2012 Calcium doped graphane as a hydrogen storage material Appl Phys Lett 100 183902

    Article  ADS  Google Scholar 

  83. Miura Y, Kasai H, Dino W, Nakanishi H, Sugimoto T 2003 First principles studies for the dissociative adsorption of H2 on graphene J Appl Phys 93 3395–400

    Article  ADS  Google Scholar 

  84. Chen J J, Li W W, Li X L, Yu H Q 2012 Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation Environ Sci Technol 46 10341–8

    Article  ADS  Google Scholar 

  85. Katsnelson M I, Fasolino A 2013 Graphene as a prototype crystalline membrane. Acc Chem Res 46 97–105

    Article  Google Scholar 

  86. Leenaerts O, Partoens B, Peeters F M Graphene: a perfect nanoballoon 2008 Appl Phys Lett 93 193107

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shunin, Y., Bellucci, S., Gruodis, A., Lobanova-Shunina, T. (2018). Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem. In: Nonregular Nanosystems. Lecture Notes in Nanoscale Science and Technology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-69167-1_8

Download citation

Publish with us

Policies and ethics