Skip to main content

General Approach to the Description of Fundamental Properties of Disordered Nanosized Media

  • Chapter
  • First Online:
Nonregular Nanosystems

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 26))

  • 671 Accesses

Abstract

Physics of non-regular nanosystems is a branch of physics dealing with nanoagents – nanoparticles when non-regular nanosized morphological characteristics predetermine the nature and essence of physical phenomenon (nanophenomenon). In particular, multiple technological interfaces of nanoparticles with morphologically regular systems imply a creation of micro- or mesostructures with essential nanodimensional effects (e.g. in various schemes of functionalization of nanocarbon systems, viz. carbon nanotubes (CNTs), graphene nanoribbons (GNRs), graphene nanoflakes (GNFs), carbon-based nanoaerogels and nanofoams, etc.). However, classes of nanomaterials, in addition to nanocarbon systems, can be essentially expanded now. There are nanotube structures based on boron nitrides (BN), TiO2, chalcogenides (As-S, As-Se, As-Te, etc.) and many others. Such nanosystems should also be considered as non-regular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buzea C, Pacheco I I, Robbie K 2007 Nanomaterials and nanoparticles: Sources and toxicity Biointerphases 2(4) MR17–71

    Article  Google Scholar 

  2. Iijima S 1980 Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy Journal of Crystal Growth 50(3) 675–83

    Article  ADS  Google Scholar 

  3. Raduhkevich L V, Luckyanovich V M 1952 On carbon structure under thermal decomposition on Fe contact J Phys. Chem. 26 88–95 (in Russian)

    Google Scholar 

  4. Lehn J-M 1995 Supramolecular Chemistry VCH ISBN 3-527-29311-6

    Google Scholar 

  5. Walter P, Alberts, B, Johnson, A S, Lewis J, Raff M C, Roberts K 2008 Molecular Biology of the Cell (5th edition, Extended version) New York: Garland Science

    Google Scholar 

  6. Slabaugh M R, Seager S L 2007 Organic and Biochemistry for Today (6th ed.) Pacific Grove: Brooks Cole

    Google Scholar 

  7. Nicolai T, Colombani O, Chassenieux Ch 2010 Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers Soft Matter 6(14) 3111–8

    Article  ADS  Google Scholar 

  8. Torchilin V 2006 Multifunctional nanocarriers Advanced Drug Delivery Reviews 58(14) 1532–55

    Article  Google Scholar 

  9. Yablonovitch E 1987 Inhibited Spontaneous Emission in Solid-State Physics and Electronics Physical Review Letters 58(20) 2059–62

    Article  ADS  Google Scholar 

  10. Talapin D V 2012 Nanocrystal solids: A modular approach to materials design MRS Bulletin 37 63–71

    Article  Google Scholar 

  11. Blank V 1998 Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear Diamond and Related Materials 7(2–5) 427–31

    Google Scholar 

  12. Zhang S, Sun D, Fu Y, Du H 2003 Recent advances of superhard nanocomposite coatings: a review Surf. Coat. Technol. 167(2–3) 113–9

    Article  Google Scholar 

  13. Silvestre N 2013 State-of-the-art Review on Carbon Nanotube Reinforced Metal Matrix Composites International Journal of Composite Materials 3(6A) 28–44

    Google Scholar 

  14. Manias E 2007 Nanocomposites: Stiffer by design Nature Materials 6(1) 9–11

    Article  ADS  Google Scholar 

  15. Lang X Y, Zhang G H, Lian J S, Jiang Q 2006 Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films Thin Solid Films 497(1–2) 333–7

    Article  ADS  Google Scholar 

  16. Nanoporous Materials: Science and Engineering 2004 Eds G Q Lu and X S Zhao Series on Chemical Engineering Imperial College Press 912p

    Google Scholar 

  17. Aegerter M A, Leventis N, Koebel M M 2011 Aerogels Handbook Springer publishing

    Google Scholar 

  18. Weibel A, Bouchet R, Boulc’h, F, Knauth P 2005 The Big Problem of Small Particles: A Comparison of Methods for Determination of Particle Size in Nanocrystalline Anatase Powders Chem. Mater. 17 2378–85

    Article  Google Scholar 

  19. Hilding J, Grulke E A, Zhang Z G, Lockwood F 2003 Dispersion of Carbon Nanotubes in Liquids J Dispersion Science and Technology 24(1) 1–41

    Article  Google Scholar 

  20. Shid R L, Dhole Sh.N, Kulkarni N, Shid S L 2013 Nanosuspension: A Review Int. J. Pharm. Sci. Rev. Res. 22(1) 98–106

    Google Scholar 

  21. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M J 2005 Nano-emulsions Current Opinion in Colloid & Interface Science 10( 3–4) 102–10

    Article  Google Scholar 

  22. Bogdan A, Bucket M I,, Japuntich D 2014 Nano-Sized Aerosol Classification, Collection and Analysis—Method Development Using Dental Composite Materials Journal of Occupational and Environmental Hygiene 11(7) 415–26

    Google Scholar 

  23. Moore P B 2012 How Should We Think About the Ribosome? Annual Review of Biophysics 41(1) 1–19

    Google Scholar 

  24. Zhang Zhi-cheng, Xu Biao,Wang Xun 2014 Engineering nanointerfaces for nanocatalysis Chem. Soc. Rev. 43 7870–86

    Google Scholar 

  25. Shunin Yu, Bellucci S, Zhukovskii Yu, Gopeyenko V, Burlutskaya N, Lobanova-Shunina T 2015 Nanocarbon electromagnetics in CNT-, GNR- and aerogel-based nanodevices: models and simulations Computer Modelling & New Technologies 19(1A) 35–42

    Google Scholar 

  26. Shunin Yu N, Zhukovskii Yu F, Gopeyenko V I, Burlutskaya N, Lobanova-Shunina T, Bellucci S 2012 Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures J. Nanophotonics 6(1) 061706–16

    Google Scholar 

  27. Ioffe A F, Regel A R 1960 Non-crystalline, amorphous, and liquid electronic semiconductors Prog. Semicond. 4 237–91

    Google Scholar 

  28. Gubanov A I 1963 Quantum electronic theory of amorphous conductors (Moscow:Nauka) 264р (in Russian)

    Google Scholar 

  29. Mott N F, Davis E A 1971 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon-Press) 437p

    Google Scholar 

  30. Lifshitz I M, Gredeskul S A, Pastur L A 1986 Introduction to the theory of disordered systems (Moscow:Mir) 360p (in Russian); Lifshitz, I M, Gredeskul, S A, Pastur, L A 1988 Introduction to the theory of disordered systems (New York:Wiley)

    Google Scholar 

  31. Ziman J M 1979 Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems (New York :JohnWilley & Sons)

    Google Scholar 

  32. Feltz A 1983 Amorphe und glasartige anorganische Festkörper (Berlin: Akademie-Verlag); Feltz A 1986 Amorphous and glassy inorganic solids (Мoscow:Mir) (in Rusian); Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim:Wiley-VCH Verlag GmbH)

    Google Scholar 

  33. Bonch-Bruevich V L, Zvyagin I P, Kaiper R, Mironov A G, Enderlain R, Esser B 1981 Electron Theory of Disordered Semiconductors (Мoscow:Nauka) 383p (in Rusian)

    Google Scholar 

  34. Zvyagin I P 1984 Kinetic phenomena in disordered semiconductors Мoscow: MSU) 192p (in Rusian)

    Google Scholar 

  35. Cutler M 1977 Liquid semiconductors (Oxford : Elsevier Science)

    Google Scholar 

  36. Regel A P, Glazov V M 1980 Physical properties of electronic melts (Moscow: Nauka) (in Russian)

    Google Scholar 

  37. Shklovski B I, Efros A L 1979 Electronic properties of doped semiconductor (Moscow:Nauka) (in Russian); Shklovski B I, Efros A L 1984 Electronic properties of doped semiconductors (Heidelberg:Springer)

    Google Scholar 

  38. Ehrenreich H, Schwartz L M 1976 The Electronic Structure of Alloys Phys Rev B. Solid State 31 149–286

    Article  Google Scholar 

  39. Klinger M I 1988 Glassy disordered systems: topology, atomic dynamics and localized electron states Phys.Rep. 165 275–397

    Article  ADS  Google Scholar 

  40. Marshall J M 1983 Carrier diffusion in amorphous semiconductors Rep.Progr.Phys. 46 1235–82

    Article  ADS  Google Scholar 

  41. Shvarts К К 1986 Physics of optical recording in isolators and semiconductors (Riga:Zinatne) (in Russian)

    Google Scholar 

  42. Shunin Yu N, Shvarts К K Atomic and electronic structure of disordered semiconductors Preprint: Institute of Physics Academy of Sciences of Latvia LAFI-154 (Riga-Salaspils:IP) 97 p (in Russian)

    Google Scholar 

  43. Shunin Yu N, Shvarts К K 1990 Modelling of radiation stimulated processes in disordered semiconductors Izv AN LSSR ser fiz i tehn nauk No 2 38–56 (in Russian)

    Google Scholar 

  44. The Structure and Properties of Matter 1982 Ed T Matsubara. (Berlin-Heidelberg-N.-Y.:Springer Verlag)

    Google Scholar 

  45. Shvarts К K, Pirogov F V, Shunin Yu N, Teteris J A 1987 Photoinduced structural changes in amorphous chalcogenides Cryst. Latt. Def. and Amorph. Mat. 17 133–8

    Google Scholar 

  46. Shunin Yu N, Zhukovskii Yu F, Gopeyenko V I, Burlutskaya N Yu, Bellucci S 2012 Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems In: Nanodevices and Nanomaterials for Ecological Security, Series: NATO Science for Peace Series B - Physics and Biophysics, eds. Yu.Shunin, A. Kiv (Springer Verlag, Heidelberg) 237–62

    Google Scholar 

  47. Physical and chemical properties of semiconductors 1978 Handbook (Moscow:Nauka) (in Russian)

    Google Scholar 

  48. Ridley B K 1982 Quantum processes in semiconductors (N-Y. Oxford University Press) 1st-5th edtions 1982, 1988, 1993, 1999, 2013

    Google Scholar 

  49. Shunin Yu N, Schwartz K K 1997 Correlation between electronic structure and atomic configurations in disordered solids In: Computer Modelling of Electronic and Atomic Processes in Solids, Eds R C Tennyson and A E Kiv (Dodrecht/Boston/London: Kluwer Acad. Publisher) 241–57

    Google Scholar 

  50. Tanaka K 2003 Nanostructured chalcogenide glasses Journal of Non-Crystalline Solids 326–327 21–8

    Google Scholar 

  51. Sethna J P 2011 Statistical Mechanics: Entropy, Order Parameters, and Complexity (Oxford: Clarendon Press) 215–40

    Google Scholar 

  52. Owen A E 1973 Preparation of amorphous materials and the glassformation In: Electronic and structural properties of amorphous semiconductors Eds P C Le Comber, J Mort (London-N.Y.:Ac.Press)

    Google Scholar 

  53. Kuni F M 1981 Statisticheskaia fizika i termodinamika (Moskva:Nauka) (in Russian)

    Google Scholar 

  54. Fisher I Z, Kopeliovich B Ja 1960 On precision of superpositional approach in liquid theory Dokl Akad Nauk SSSR 133 1392–5

    Google Scholar 

  55. Thorpe M F 1985 Rigidity percolation In: Physics of Disordered Materials Eds.D.Adler, H Fritzsche, R.Ovshinsky (N.-Y.-London: Ac.Press) 55–61

    Google Scholar 

  56. Akzhigitova O F, Tarasov R V, Makarova L V 2014 Research methods and equipment in nanotechnologies Modern scientific researches and innovation No.5 http://web.snauka.ru/issues/2014/05/34627

  57. Topological disordered in condensed matter 1983 Ed F Yonezawa and T Ninomiya (Berlin-Heidelberg-N.-Y.-Tokyo: Springer Verlag)

    Google Scholar 

  58. Bernal J D 1964 The structure of Liquids Proc.Roy.Soc.A. 280 299–322

    Google Scholar 

  59. Ishikawa T 1975 The Assembly of Hard Spheres as a structure models of amorphous iron phys.stat.sol. (a) 29 293–302

    Google Scholar 

  60. Greaves G N, Davis E A 1974 A continuous random network model with threefold coordination Phys.Mag. 29 1201–6

    Article  ADS  Google Scholar 

  61. Connel C A N, Temkin R J 1974 Modelling the structure of amorphous tetrahedrally coordinated semiconductors Phys.Rev.B 9 5323–33

    Google Scholar 

  62. Wooten F, Winer K, Weaire D 1985 Computer generation of structural models of amorphous Si and Ge Phys.Rev.Lett. 54 1392–5

    Article  ADS  Google Scholar 

  63. Compendium of Chemical Terminology. Gold Book 2014 Version 2.3.3 International Union of Pure and Applied Chemistry – IUPAC 2014-02-24

    Google Scholar 

  64. Scholze H 1991 Glass. Nature, structure and properties (N-Y-Berlin-Heidelberg-London-Paris-Tokyo-Hong Kong Barcelona: Springer-Verlag)

    Google Scholar 

  65. Stevels J M 1948 Progress in the Theory of the Physical Properties of Glass Elsevier Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shunin, Y., Bellucci, S., Gruodis, A., Lobanova-Shunina, T. (2018). General Approach to the Description of Fundamental Properties of Disordered Nanosized Media. In: Nonregular Nanosystems. Lecture Notes in Nanoscale Science and Technology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-69167-1_2

Download citation

Publish with us

Policies and ethics