Skip to main content

Nanosensor Systems Simulations

  • Chapter
  • First Online:
  • 676 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 26))

Abstract

The chapter presents functionalized CNT and GNR nanostructures as the basis for the creation of physical, chemical and biochemical nanosensors. We have shown in our simulations the sensitivity of electron conductivity of FET-type nanodevices (based on CNTs and GNRs) to local doping by nitrogen and boron. This phenomenon provides the prospective of creating nanosensors.

We develop bio-nanosensors based on polymer nanotracks with various enzymes (e.g. a glucose biosensor based on the enzyme glucose oxidase (GOx) covalently linked to nanopores of etched nuclear track membranes), which provide the corresponding biocatalytic reactions and give reliably controlled ion currents. We have obtained theoretical calibration dependences using simulation of chemical kinetics glucose oxidation with GOx. Providing a proper description of electric responses in nanosensoring systems, we aim to demonstrate the implementation of advanced simulation models suitable for real-time control nanosystems. We consider the prospects and prototypes of the bio-nanosensor models providing the comparisons with experimental calibration dependences. We also consider models of temperature and pressure nanosensors based on nanocarbon composites. Fragments of nanocarbon inclusions with different morphologies presenting a disordered system are regarded suitable for the model of nanocomposite materials based on the carbon nanoсluster suspension in dielectric polymer environments (e.g. epoxy resins). The comparison with experimental data demonstrates the validity of the developed nanosensor model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shunin Yu, Kiv A (Eds) 2012 Nanodevices and Nanomaterials for Ecological Security. Series: NATO Science for Peace Series B – Physics and Biophysics (Heidelberg: Springer Verlag) 363 p.

    Google Scholar 

  2. Shunin Yu N, Zhukovskii Yu F, Gopeyenko V I, Burlutskaya N Yu, Bellucci S 2012 Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems In: Nanodevices and Nanomaterials for Ecological Security. Series NATO Science for Peace Series B – Physics and Biophysics Eds Shunin Yu, Kiv A (Heidelberg: Springer Verlag) 237–62

    Google Scholar 

  3. Shunin Y, Bellucci S, Zhukovskii Y, Lobanova-Shunina T, Burlutskaya N, Gopeyenko V 2015 Modelling and simulation of CNTs- and GNRs-based nanocomposites for nanosensor devices Computer Modelling and New Technologies 19(5) 14–20

    Google Scholar 

  4. Shunin Yu N, Gopeyenko V I, Burlutskaya N, Lobanova-Shunina T, Bellucci S 2013 Electromagnetic properties of CNTs and GNRs based nanostructures for nanosensor systems In: Proc. Int.. Conf. „Physics, Chemistry and Application of Nanostructures-Nanomeeting-2013, Minsk, Belarus Eds. Borisenko V E, Gaponenko S V, Gurin V S, Kam C H (New-Jersey, London, Singapore: World Scientific) 250–3

    Google Scholar 

  5. Shunin Yu, Bellucci S, Zhukovskii Yu, Gopeyenko V, Burlutskaya N, Lobanova-Shunina T 2015 Nanocarbon electromagnetics in CNT-, GNR- and aerogel-based nanodevices: models and simulations Computer Modelling and New Technologies 19(1A) 35–42

    Google Scholar 

  6. D’yachkov P N, Kutlubaev D Z, Makaev D V 2010 Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities Phys. Rev. B: Condens. Matter Mater. Phys. 82 035426-1-15

    Google Scholar 

  7. Ao Zh, Yang J, Li S 2011 Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage In: Physics and Applications of Graphene-Theory Ed Mikhailov S (InTech: Rijeka-Shanghai) 534 p

    Google Scholar 

  8. Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Grains and grain boundaries in single-layer graphene atomic patchwork quilts Nature (London) 469 389–92

    Google Scholar 

  9. Lahiri J, Lin Y, Bozkurt P, Oleynik I L, Batzill M 2010 An extended defect in graphene as a metallic wire Nature Nanotechnology 5 326–9

    Article  ADS  Google Scholar 

  10. Brito W H, Kagimura R, Miwa R H 2012 B and N doping in graphene ruled by grain boundary defects Phys. Rev. B 85 035404-1-6

    Google Scholar 

  11. Fink D, Klinkovich I, Bukelman O, Marks R S, Kiv A, Fuks D, Fahrner W R, Alfonta L 2009 Glucose determination using a re-usable enzyme-modified ion track membrane sensor Biosensors and Bioelectronics 24 2702–6

    Article  Google Scholar 

  12. Fink D, Kiv A, Shunin Y, Mykytenko N, Lobanova-Shunina T, Mansharipova A, Koycheva T, Muhamediyev R, Gopeyenko V, Burlutskaya N, Zhukovskii Y, Bellucci S 2015 The nature of oscillations of ion currents in the ion track electronics Computer Modelling and New Technologies 19(6) 7–13

    Google Scholar 

  13. Fink D, Gerardo Mun˜oz H, Alfonta L, Mandabi Y, Dias J F, de Souza C T, Bacakova L E, Vacı’k J, Hnatowicz V, Kiv A E, Fuks D, Papaleo R M 2012 Status and Perspectives of Ion Track Electronics for Advanced Biosensing In: Nanodevices and Nanomaterials for Ecological Security. Series: NATO Science for Peace Series B – Physics and Biophysics Eds. Shunin Yu and Kiv A (Springer Verlag: Heidelberg) 269–79

    Google Scholar 

  14. Shunin Yu, Alfonta L, Fink D, Kiv A, Mansharipova A, Muhamediyev R, Zhukovskii Yu, Lobanova-Shunina T, Burlutskaya N, Gopeyenko V, Bellucci S 2016 Modelling and simulation of electric response of nanocarbon nanocomposites and nanoporous polymer based structures for nanosensor devices In: Theses of the 14th Int. scientific conference Information Technologies and Management 2016 April 14–15, 2016 ISMA University Riga Latvia 2016 11–4 http://isma.lv/FILES/SCIENCE/IT&M2016_THESES/NN/01_IT&M2016_Shunin.pdf

  15. Shunin, Yu, Fink D, Kiv A, Alfonta L, Mansharipova A, Muhamediyev R, Zhukovskii Yu, Lobanova-Shunina T, Burlutskaya N, Gopeyenko V, Bellucci S 2016 Theory and modelling of physical and bio-nanosensor systems In: Proceedings of the 5th Int Workshop Nanocarbon Photonics and Optoelectronics. 1–6 August 2016, Holiday Club Saimaa, Lappeeranta, Finland 2016 101 http://www.npo.fi/documents/409792/994899/Yury_Shunin.pdf/08431866-6f2c-4624-a4c9-9614dea5f747

  16. Fink D, Cruz S A, H Garcia A, G Muñoz H., Kiv A, Alfonta L, Vacik J, Hnatowicz V, Shunin Yu, Bondaruk Yu, Mansharipova A T, Mukhamedyev R I 2017 Improving the design of ion track-based biosensors NATO ADVANCED RESEARCH WORKSHOP, 14–17 AUGUST 2017, KIEV, UKRAINE DETECTION OF CBRN-NANOSTRUCTURED MATERIALS (DCBRN-2017)

    Google Scholar 

  17. Shunin Yu N, Schwartz K K 1997 Correlation between electronic structure and atomic configurations in disordered solids In: Computer Modelling of Electronic and Atomic Processes in Solids Eds Tennyson R C and Kiv A E (Dordrecht/Boston/London: Kluwer Acad. Publisher) 241–57

    Google Scholar 

  18. Shunin Yu N, Shvarts K K 1986 Calculation of the electronic structure in disordered semiconductors Physica Status Solidi (b) 135(1) 15–36

    Article  ADS  Google Scholar 

  19. Shunin Yu N, Zhukovskii Yu F, Gopeyenko V I, Burlutskaya N, Lobanova-Shunina T, Bellucci S 2012 Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures. J Nanophotonics 6 061706-1-16

    Google Scholar 

  20. Shunin Yu N, Zhukovskii Yu F, Gopejenko V I, Burlutskaya N, Bellucci S 2011 Ab initio simulations on electric properties for junctions between carbon nanotubes and metal electrodes Nanosci. Nanotech. Lett. 3(6), 816–25, https://doi.org/10.1166/nnl.2011.1249

  21. Shunin Yu N, Zhukovskii Yu F, Burlutskaya N, Bellucci S 2011 Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates Central Eur. J. Phys. 9(2) 519–29 https://doi.org/10.2478/s11534-010-0086-9

  22. Landau L D 1957 The theory of a Fermi liquid Soviet Physics JETP 3(6), 920–5; Exp. Theoret. Phys. (U.S.S.R.) 1956 30 1058–64

    Google Scholar 

  23. Gurzhi R P, Shevchenko S I 1968 Hydrodynamic mechanism of electric conductivity of metals in a magnetic field Soviet Physics JETP 27(6) 1019–22

    ADS  Google Scholar 

  24. Mendoza M, Herrmann H J, Succi S 2013 Hydrodynamic model for conductivity in graphene Scientific Reports 3 1052 1–6 doi: https://doi.org/10.1038/.srep01052

  25. Drude P 1900 Zur Elektronentheorie der metalle Annalen der Physik 306(3) 566 Bibcode:1900AnP 306..566 D. doi:https://doi.org/10.1002/andp.19003060312

  26. Drude P 1900 Zür Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effekte Annalen der Physik 308(11) 369 Bibcode:1900AnP...308..369D. doi:https://doi.org/10.1002/andp.19003081102

  27. Landauer R 1957 Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction IBM Journal of Research and Development 1 223–31

    Google Scholar 

  28. Mott N F 1968 Metal-Insulator Transition Rev. Mod. Phys. 40 677–83

    Article  ADS  Google Scholar 

  29. Seager C H, Pike G E 1974 Percolation and conductivity: A computer study. II. Phys. Rev. B 10 1435–46

    Article  ADS  Google Scholar 

  30. Shunin, Yu N, Gopeyenko V I, Burlutskaya N Yu, Lobanova-Shunina T D, Bellucci S 2015 Electromechanical properties of carbon-based nanocomposites for pressure and temperature nanosensors EuroNanoForum 2015, 1–12 June 2015 http://euronanoforum2015.eu/wp-content/uploads/2015/03/Abstract_Shunin.pdf

  31. Abdrakhimov R R, Sapozhnikov S B, Sinitsin V V 2013 Pressure and temperature sensors basis of ordered structures of carbon nanotubes in an epoxy resin Bulletin of the South Ural State University Series “Computer Technologies, Automatic Control, Radio Electronics 13(4) 16–23

    Google Scholar 

  32. Zhou Y X, Wu P X, Cheng Z –Y, Ingram J, Jeelani S 2008 Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube EXPRESS Polymer Letters 2(1) 40–8 http://www.expresspolymlett.com/articles/EPL-0000490_article.pdf

  33. Shklovski B I, Efros A L 1979 Electronic properties of doped semiconductor (Moscow: Nauka) ) (in Russian); Shklovski B I, Efros A L 1984 Electronic properties of doped semiconductors (Heidelberg: Springer)

    Google Scholar 

  34. Kubo R 1957 Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems J. Phys. Soc. Jpn. 12 570–86

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang J 2008 Electrochemical Glucose Biosensors Chem. Rev. 108 814–25

    Article  Google Scholar 

  36. Bellucci S, Shunin Yu, Gopeyenko V, Lobanova-Shunina T, Burlutskaya N, Zhukovskii Yu 2017 Real time polymer nanocomposites-based physical nanosensors: theory and modelling Nanotechnology 28 355502 (9p)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shunin, Y., Bellucci, S., Gruodis, A., Lobanova-Shunina, T. (2018). Nanosensor Systems Simulations. In: Nonregular Nanosystems. Lecture Notes in Nanoscale Science and Technology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-69167-1_10

Download citation

Publish with us

Policies and ethics