Skip to main content

Troubles with the radiation reaction in electrodynamics

  • Conference paper
  • First Online:
Physical and Mathematical Aspects of Symmetries

Abstract

The dynamics of a radiating charge is one of the oldest unsettled problems in classical physics. The standard Lorentz-Abraham-Dirac (LAD) equation of motion is known to suffer from several pathologies and ambiguities. This paper briefly reviews these issues, and reports on a new model that fixes these difficulties in a natural way. This model is based on a hypothesis that there is an infinitesimal time delay between action and reaction. This can be related to Feynman’s regularization scheme, leading to a quasi-local QED with a natural UV cutoff, hence without the need for renormalization as the divergences are absent. Besides leading to a pathology-free equation of motion, the new model predicts a modification of the Larmor formula that is testable with current and near future ultra-intense lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Faci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faci, S., Helayel-Neto, J.A., Satheeshkumar, V.H. (2017). Troubles with the radiation reaction in electrodynamics. In: Duarte, S., Gazeau, JP., Faci, S., Micklitz, T., Scherer, R., Toppan, F. (eds) Physical and Mathematical Aspects of Symmetries. Springer, Cham. https://doi.org/10.1007/978-3-319-69164-0_26

Download citation

Publish with us

Policies and ethics