Skip to main content

Number Theoretic Aspects of Regular Sequences

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

We present a survey of results concerning regular sequences and related objects. Regular sequences were defined in the early 1990s by Allouche and Shallit as a combinatorially, algebraically, and analytically interesting generalization of automatic sequences. In this chapter, after an historical introduction, we follow the development from automatic sequences to regular sequences, and their associated generating functions, to Mahler functions. We then examine size and growth properties of regular sequences. The last half of the chapter focuses on the algebraic, analytic, and Diophantine properties of Mahler functions. In particular, we survey the rational-transcendental dichotomies of Mahler functions, due to Bézivin, and of regular numbers, due to Bell, Bugeaud, and Coons.

The research of M. Coons was supported in part by Australian Research Council grant DE140100223. Lukas Spiegelhofer was supported by the Austrian Science Fund (FWF), projects F5502-N26 and F5505-N26, which are part of the Special Research Program “Quasi Monte Carlo Methods: Theory and Applications”, and also by the ANR–FWF joint project MuDeRa (Multiplicativity, Determinism and Randomness). The authors thank the Erwin Schrödinger Institute for Mathematics and Physics where part of this chapter was written during the workshop on “Normal Numbers: Arithmetic, Computational and Probabilistic Aspects.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a detailed account of automatic sequences, see the monograph of Allouche and Shallit [14]. See also Section 1.6.1.

  2. 2.

    Two integers k and l are multiplicatively independent provided \(\log k/\log l\) is irrational.

  3. 3.

    This result is inherent in the work of Cobham. In the 1980s, Loxton and van der Poorten [389] claimed to have proved that an automatic number is either rational or transcendental, but a few unresolvable flaws were found in their argument. This is why their name is associated with the conjecture.

  4. 4.

    We make no comment on the randomness properties of integer sequences, but will be content with their generality as is.

  5. 5.

    Allouche and Shallit gave a more general treatment for sequences taking values in Noetherian rings. In our applications, the most important settings are those of the integers and complex numbers, depending on the type of result presented. For our purposes, for results on sequences and numbers, the integers will be the standard setting, and for results on power series those with complex coefficients will be the most important.

References

  1. Adamczewski, B., Bell, J.P.: A problem around Mahler functions. Ann. Sc. Norm. Super. Pisa. (2013, to appear). ArXiv:1303.2019

    Google Scholar 

  2. Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. Math. (2) 165(2), 547–565 (2007)

    Article  MathSciNet  Google Scholar 

  3. Adamczewski, B., Faverjon, C.: Méthode de Mahler: relations linéaires, transcendance et application aux nombres automatiques. Proc. Lond. Math. Soc. 115, 55–90 (2017)

    Article  MathSciNet  Google Scholar 

  4. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Allouche, J.-P., Shallit, J.O.: The ring of k-regular sequences. Theor. Comput. Sci. 98, 163–197 (1992)

    Article  MathSciNet  Google Scholar 

  6. Becker, P.G.: Effective measures for algebraic independence of the values of Mahler type functions. Acta Arith. 58(3), 239–250 (1991)

    Article  MathSciNet  Google Scholar 

  7. Becker, P.G.: k-regular power series and Mahler-type functional equations. J. Number Theory 49(3), 269–286 (1994)

    Article  MathSciNet  Google Scholar 

  8. Bell, J.P., Bugeaud, Y., Coons, M.: Diophantine approximation of Mahler numbers. Proc. Lond. Math. Soc. (3) 110(5), 1157–1206 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bell, J.P., Coons, M.: Transcendence tests for Mahler functions. Proc. Am. Math. Soc. 145(3), 1061–1070 (2017)

    Article  MathSciNet  Google Scholar 

  10. Bell, J.P., Coons, M., Hare, K.G.: The minimal growth of a k-regular sequence. Bull. Aust. Math. Soc. 90(2), 195–203 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bell, J.P., Coons, M., Rowland, E.: The rational-transcendental dichotomy of Mahler functions. J. Integer Seq. 16(2), 11 (2013). Article 13.2.10

    Google Scholar 

  12. Bézivin, J.P.: Sur une classe d’équations fonctionnelles non linéaires. Funkcial. Ekvac. 37(2), 263–271 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Blondel, V.D., Nesterov, Y., Theys, J.: On the accuracy of the ellipsoid norm approximation of the joint spectral radius. Linear Algebra Appl. 394, 91–107 (2005)

    Article  MathSciNet  Google Scholar 

  14. Blondel, V.D., Theys, J., Vladimirov, A.A.: An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24(4), 963–970 (electronic) (2003)

    Article  MathSciNet  Google Scholar 

  15. Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti Circ. Mat. Palermo 27, 247–271 (1909)

    Article  Google Scholar 

  16. Bousch, T., Mairesse, J.: Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Am. Math. Soc. 15(1), 77–111 (electronic) (2002)

    Google Scholar 

  17. Bugeaud, Y.: Expansions of algebraic numbers. In: Four Faces of Number Theory. EMS Series of Lectures in Mathematics, pp. 31–75. European Mathematical Society, Zürich (2015)

    Google Scholar 

  18. Bundschuh, P.: Algebraic independence of infinite products and their derivatives. In: Number Theory and Related Fields. Springer Proceedings in Mathematics and Statistics, vol. 43, pp. 143–156. Springer, New York (2013)

    Chapter  Google Scholar 

  19. Calkin, N.J., Wilf, H.S.: Binary partitions of integers and Stern-Brocot-like trees. unpublished pp. updated version August 5, 2009, 19 pp. (1998)

    Google Scholar 

  20. Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Syst. Theory 3, 186–192 (1969)

    Article  MathSciNet  Google Scholar 

  21. Coons, M.: Regular sequences and the joint spectral radius. Int. J. Found. Comput. Sci. 28(2), 135–140 (2017)

    Article  MathSciNet  Google Scholar 

  22. Coons, M.: Zero order estimate for Mahler functions. N. Z. J. Math. 46, 83–88 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Coons, M., Tyler, J.: The maximal order of Stern’s diatomic sequence. Mosc. J. Comb. Number Theory 4(3), 3–14 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Daubechies, I., Lagarias, J.C.: Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161, 227–263 (1992)

    Article  MathSciNet  Google Scholar 

  25. Dumas, P.: Récurrences mahlériennes, suites automatiques, études asymptotiques. Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt (1993). Thèse, Université de Bordeaux I, Talence, 1993

    Google Scholar 

  26. Dumas, P.: Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences. Linear Algebra Appl. 438(5), 2107–2126 (2013)

    Article  MathSciNet  Google Scholar 

  27. Dumas, P.: Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated. Theor. Comput. Sci. 548, 25–53 (2014)

    Article  MathSciNet  Google Scholar 

  28. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New York (1974)

    MATH  Google Scholar 

  29. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  30. Hare, K.G., Morris, I.D., Sidorov, N., Theys, J.: An explicit counterexample to the Lagarias-Wang finiteness conjecture. Adv. Math. 226(6), 4667–4701 (2011)

    Article  MathSciNet  Google Scholar 

  31. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 285–306 (1965)

    Article  MathSciNet  Google Scholar 

  32. Jungers, R.: The Joint Spectral Radius, Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 385. Springer, Berlin (2009)

    Book  Google Scholar 

  33. Jungers, R.M., Blondel, V.D.: On the finiteness property for rational matrices. Linear Algebra Appl. 428(10), 2283–2295 (2008)

    Article  MathSciNet  Google Scholar 

  34. Kozyakin, V.S.: A dynamical systems construction of a counterexample to the finiteness conjecture. In: Proceedings of the 44th IEEE Conference on Decision and Control, European Control Conference, pp. 2338–2343 (2005)

    Google Scholar 

  35. Lagarias, J.C., Wang, Y.: The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214, 17–42 (1995)

    Article  MathSciNet  Google Scholar 

  36. Lansing, J.: Distribution of values of the binomial coefficients and the Stern sequence. J. Integer Seq. 16(3), Article 13.3.7, 10 (2013)

    Google Scholar 

  37. Loxton, J.H.: A method of Mahler in transcendence theory and some of its applications. Bull. Aust. Math. Soc. 29(1), 127–136 (1984)

    Article  MathSciNet  Google Scholar 

  38. Loxton, J.H., van der Poorten, A.J.: Arithmetic properties of automata: regular sequences. J. Reine Angew. Math. 392, 57–69 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Mahler, K.: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101(1), 342–366 (1929)

    Article  MathSciNet  Google Scholar 

  40. Mahler, K.: Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann. 103(1), 573–587 (1930)

    Article  MathSciNet  Google Scholar 

  41. Mahler, K.: Remarks on a paper by W. Schwarz. J. Number Theory 1, 512–521 (1969)

    Article  MathSciNet  Google Scholar 

  42. McNaughton, R., Zalcstein, Y.: The Burnside problem for semigroups. J. Algebra 34, 292–299 (1975)

    Article  MathSciNet  Google Scholar 

  43. Nesterenko, Y.V.: Estimate of the orders of the zeroes of functions of a certain class, and their application in the theory of transcendental numbers. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 253–284, 477 (1977)

    Google Scholar 

  44. Nesterenko, Y.V.: Algebraic independence of algebraic powers of algebraic numbers. Mat. Sb. (N.S.) 123(165)(4), 435–459 (1984)

    Google Scholar 

  45. Nikishin, E.M., Sorokin, V.N.: Rational approximations and orthogonality. Translations of Mathematical Monographs, vol. 92. American Mathematical Society, Providence, RI (1991). Translated from the Russian by Ralph P. Boas

    Google Scholar 

  46. Nishioka, K.: Algebraic independence measures of the values of Mahler functions. J. Reine Angew. Math. 420, 203–214 (1991)

    MathSciNet  MATH  Google Scholar 

  47. Randé, B.: Équations fonctionnelles de Mahler et applications aux suites p-régulières. Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt (1992). Thèse, Université de Bordeaux I, Talence, 1992

    Google Scholar 

  48. Reznick, B.: Some binary partition functions. In: Analytic Number Theory (Allerton Park, IL, 1989). Progress in Mathematics, vol. 85, pp. 451–477. Birkhäuser, Boston, MA (1990)

    Chapter  Google Scholar 

  49. Rota, G.C., Strang, G.: A note on the joint spectral radius. Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22, 379–381 (1960)

    Article  MathSciNet  Google Scholar 

  50. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955). corrigendum, 168

    Article  MathSciNet  Google Scholar 

  51. Schlickewei, H.P.: The \({\mathfrak p}\)-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. (Basel) 29(3), 267–270 (1977)

    Article  MathSciNet  Google Scholar 

  52. Töpfer, T.: Zero order estimates for functions satisfying generalized functional equations of Mahler type. Acta Arith. 85(1), 1–12 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Coons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coons, M., Spiegelhofer, L. (2018). Number Theoretic Aspects of Regular Sequences. In: Berthé, V., Rigo, M. (eds) Sequences, Groups, and Number Theory. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-69152-7_2

Download citation

Publish with us

Policies and ethics