Advertisement

Amenability of Groups and G-Sets

  • Laurent Bartholdi
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

This text surveys classical and recent results in the field of amenability of groups, from a combinatorial standpoint. It has served as the support of courses at the University of Göttingen and the École Normale Supérieure. The goals of the text are (1) to be as self-contained as possible, so as to serve as a good introduction for newcomers to the field; (2) to stress the use of combinatorial tools, in collaboration with functional analysis, probability, etc., with discrete groups in focus; (3) to consider from the beginning the more general notion of amenable actions; and (4) to describe recent classes of examples and in particular groups acting on Cantor sets and topological full groups.

References

  1. 5.
    Adyan, S.I.: Random walks on free periodic groups. Izv. Akad. Nauk SSSR Ser. Mat. 46(6), 1139–1149, 1343 (1982)Google Scholar
  2. 7.
    Ahlfors, L.: Zur theorie der überlagerungsflächen. Acta Math. 65(1), 157–194 (1935)MathSciNetCrossRefGoogle Scholar
  3. 22.
    Anantharaman-Delaroche, C., Renault, J.: Amenable groupoids. Monographies de L’Enseignement Mathématique, vol. 36. L’Enseignement Mathématique, Geneva (2000)Google Scholar
  4. 26.
    Avez, A.: Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A-B 275, A1363–A1366 (1972)Google Scholar
  5. 35.
    Banach, S., Tarski, A.: Sur la décomposition des ensembles de points en parties respectivement congruentes. Fundam. Math. 6, 244–277 (1924)CrossRefGoogle Scholar
  6. 38.
    Bartholdi, L.: The growth of Grigorchuk’s torsion group. Int. Math. Res. Not. 20, 1049–1054 (1998)Google Scholar
  7. 39.
    Bartholdi, L.: Counting paths in graphs. Enseign. Math. (2) 45(1–2), 83–131 (1999)Google Scholar
  8. 40.
    Bartholdi, L.: On amenability of group algebras, I. Isr. J. Math. 168, 153–165 (2008)MathSciNetCrossRefGoogle Scholar
  9. 41.
    Bartholdi, L.: Gardens of Eden and amenability on cellular automata. J. Eur. Math. Soc. 12(1), 241–248 (2010)Google Scholar
  10. 43.
    Bartholdi, L., Kaimanovich, V.A., Nekrashevych, V.V.: On amenability of automata groups. Duke Math. J. 154(3), 575–598 (2010)MathSciNetCrossRefGoogle Scholar
  11. 44.
    Bartholdi, L., Kielak, D.: Amenability of groups is characterized by Myhill’s theorem (2016). ArXiv:1605.09133Google Scholar
  12. 45.
    Bartholdi, L., Virág, B.: Amenability via random walks. Duke Math. J. 130(1), 39–56 (2005)MathSciNetCrossRefGoogle Scholar
  13. 46.
    Bass, H.: The degree of polynomial growth of finitely generated nilpotent groups. Proc. Lond. Math. Soc. (3) 25, 603–614 (1972)MathSciNetCrossRefGoogle Scholar
  14. 59.
    Becker, H., Kechris, A.S.: The descriptive set theory of Polish group actions. London Mathematical Society Lecture Note Series, vol. 232. Cambridge University Press, Cambridge (1996)Google Scholar
  15. 62.
    Bekka, M.E.B., de la Harpe, P., Valette, A.: Kazhdan’s property (T). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)Google Scholar
  16. 67.
    Benjamini, I.: Coarse Geometry and Randomness. Lecture Notes in Mathematics, vol. 2100. Springer, Cham (2013). Lecture notes from the 41st Probability Summer School held in Saint-Flour, 2011CrossRefGoogle Scholar
  17. 68.
    Benjamini, I., Schramm, O.: Percolation beyond z d, many questions and a few answers. Electron. Commun. Probab. 1, no. 8, 71–82 (1996)MathSciNetCrossRefGoogle Scholar
  18. 69.
    Benjamini, I., Kozma, G.: Nonamenable Liouville graphs (2010). ArXiv:1010.3365Google Scholar
  19. 84.
    Biggs, N.L., Mohar, B., Shawe-Taylor, J.: The spectral radius of infinite graphs. Bull. Lond. Math. Soc. 20(2), 116–120 (1988)MathSciNetCrossRefGoogle Scholar
  20. 104.
    Bratteli, O.: Inductive limits of finite dimensional C -algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)Google Scholar
  21. 106.
    Brieussel, J.: Folner sets of alternate directed groups. Ann. Inst. Fourier (Grenoble) 64(3), 1109–1130 (2014)MathSciNetCrossRefGoogle Scholar
  22. 121.
    Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois Press, Urbana, IL (1970)Google Scholar
  23. 125.
    Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42(3–4), 215–256 (1996)Google Scholar
  24. 126.
    Cantor, G.: Mitteilungen zur lehre vom transfiniten. Zeitschrift fr Philosophie und philosophische Kritik 91, 81–125 (1887)Google Scholar
  25. 137.
    Ceccherini-Silberstein, T.G., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Trudy Mat. Inst. Steklov. 224(Algebra. Topol. Differ. Uravn. i ikh Prilozh.), 68–111 (1999)Google Scholar
  26. 138.
    Ceccherini-Silberstein, T.G., Machì, A., Scarabotti, F.: Amenable groups and cellular automata. Ann. Inst. Fourier (Grenoble) 49(2), 673–685 (1999)MathSciNetCrossRefGoogle Scholar
  27. 151.
    Chou, C.: Elementary amenable groups. Ill. J. Math. 24(3), 396–407 (1980)Google Scholar
  28. 158.
    Cohen, J.M.: Cogrowth and amenability of discrete groups. J. Funct. Anal. 48(3), 301–309 (1982)MathSciNetCrossRefGoogle Scholar
  29. 159.
    Cohen, P.J.: Factorization in group algebras. Duke Math. J. 26, 199–205 (1959)MathSciNetCrossRefGoogle Scholar
  30. 160.
    Connes, A.: Classification of injective factors cases ii 1, ii , iii λ, λ≠1. Ann. Math. (2) 104(1), 73–115 (1976)Google Scholar
  31. 161.
    Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dyn. Syst. 1(4), 431–450 (1981)Google Scholar
  32. 168.
    Coulhon, T., Saloff-Coste, L.: Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana 9(2), 293–314 (1993)Google Scholar
  33. 169.
    Coutinho, S.C., McConnell, J.C.: The quest for quotient rings (of noncommutative noetherian rings). Am. Math. Mon. 110(4), 298–313 (2003)MathSciNetCrossRefGoogle Scholar
  34. 181.
    Day, M.M.: Amenable semigroups. Ill. J. Math. 1, 509–544 (1957)Google Scholar
  35. 183.
    de la Harpe, P.: Topics in Geometric Group Theory. University of Chicago Press, Chicago, IL (2000)Google Scholar
  36. 194.
    Derriennic, Y.: Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B (N.S.) 12(2), 111–129 (1976)Google Scholar
  37. 195.
    Derriennic, Y.: Quelques applications du théorème ergodique sous-additif. In: Conference on Random Walks, Kleebach, 1979. Astérisque, vol. 74, pp. 183–201, 4. Soc. Math. France, Paris (1980)Google Scholar
  38. 197.
    Dixmier, J.: Les moyennes invariantes dans les semi-groups et leurs applications. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 213–227 (1950)Google Scholar
  39. 204.
    Durand, F.: Combinatorics on Bratteli diagrams and dynamical systems. In: Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 324–372. Cambridge University Press, Cambridge (2010)Google Scholar
  40. 207.
    Dye, H.A.: On groups of measure preserving transformation. I. Am. J. Math. 81, 119–159 (1959)Google Scholar
  41. 212.
    Elek, G., Monod, N.: On the topological full group of a minimal cantor Z 2-system. Proc. Am. Math. Soc. 141(10), 3549–3552 (2013)Google Scholar
  42. 218.
    Erschler, A.G.: Poisson-furstenberg boundaries, large-scale geometry and growth of groups. In: Proc. ICM Hyderabad, India, vol. II, pp. 681–704 (2010)Google Scholar
  43. 225.
    Følner, E.: Note on a generalization of a theorem of Bogolioùboff. Math. Scand. 2, 224–226 (1954)MathSciNetCrossRefGoogle Scholar
  44. 226.
    Følner, E.: On groups with full Banach mean value. Math. Scand. 3, 243–254 (1955)MathSciNetCrossRefGoogle Scholar
  45. 234.
    Furstenberg, H.: A poisson formula for semi-simple lie groups. Ann. Math. (2) 77, 335–386 (1963)MathSciNetCrossRefGoogle Scholar
  46. 235.
    Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. In: Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposia in Pure Mathematics, vol. XXVI, Williams Coll., Williamstown, MA, 1972, pp. 193–229. American Mathematical Society, Providence, RI (1973)Google Scholar
  47. 240.
    Ghys, É., Carrière, Y.: Relations d’équivalence moyennables sur les groupes de Lie. C. R. Acad. Sci. Paris Sér. I Math. 300(19), 677–680 (1985)Google Scholar
  48. 241.
    Ghys, É., de la Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83. Birkhäuser, Boston, MA (1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988Google Scholar
  49. 244.
    Glasner, S.: Proximal Flows. Lecture Notes in Mathematics, vol. 517. Springer, Berlin/New York (1976)CrossRefGoogle Scholar
  50. 245.
    Glasner, Y., Monod, N.: Amenable actions, free products and a fixed point property. Bull. Lond. Math. Soc. 39(1), 138–150 (2007)MathSciNetCrossRefGoogle Scholar
  51. 253.
    Goldie, A.W.: Semi-prime rings with maximum condition. Proc. Lond. Math. Soc. (3) 10, 201–220 (1960)MathSciNetCrossRefGoogle Scholar
  52. 254.
    Golod, E.S.: On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser. Mat. 28, 273–276 (1964). English translation: Am. Math. Soc. Transl. 48, 108–111 (1965)Google Scholar
  53. 260.
    Gottschalk, W.H.: Almost periodic points with respect to transformation semi-groups. Ann. Math. (2) 47, 762–766 (1946)MathSciNetCrossRefGoogle Scholar
  54. 261.
    Gouëzel, S.: A numerical lower bound for the spectral radius of random walks on surface groups. Comb. Probab. Comput. 24(6), 838–856 (2015)MathSciNetCrossRefGoogle Scholar
  55. 262.
    Gournay, A.: The Liouville property via Hilbertian compression (2014). ArXiv:1403.1195Google Scholar
  56. 263.
    Gournay, A.: Amenability criteria and critical probabilities in percolation. Expo. Math. 33(1), 108–115 (2015)MathSciNetCrossRefGoogle Scholar
  57. 264.
    Greenleaf, F.P.: Amenable actions of locally compact groups. J. Funct. Anal .4, 295–315 (1969)MathSciNetCrossRefGoogle Scholar
  58. 265.
    Greenleaf, F.P.: Invariant Means on Topological Groups and Their Applications. Van Nostrand Mathematical Studies, No. 16. Van Nostrand, New York (1969)Google Scholar
  59. 267.
    Grigorchuk, R.I.: Symmetrical random walks on discrete groups. In: Multicomponent Random Systems, pp. 285–325. Dekker, New York (1980)Google Scholar
  60. 268.
    Grigorchuk, R.I.: On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR 271(1), 30–33 (1983)Google Scholar
  61. 269.
    Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48(5), 939–985 (1984)Google Scholar
  62. 273.
    Gromov, M.: Entropy and isoperimetry for linear and non-linear group actions. Groups Geom. Dyn. 2(4), 499–593 (2008)Google Scholar
  63. 274.
    Gromov, M.L.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)MathSciNetCrossRefGoogle Scholar
  64. 275.
    Gromov, M.L.: Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. (JEMS) 1(2), 109–197 (1999)MathSciNetCrossRefGoogle Scholar
  65. 276.
    Gromov, M.L.: Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom. 2(4), 323–415 (1999)Google Scholar
  66. 278.
    Guivarch, Y.: Groupes de Lie à croissance polynomiale. C. R. Acad. Sci. Paris Sér. A-B 271, A237–A239 (1970)Google Scholar
  67. 280.
    Häggström, O., Jonasson, J.: Uniqueness and non-uniqueness in percolation theory. Probab. Surv. 3, 289–344 (2006)MathSciNetCrossRefGoogle Scholar
  68. 281.
    Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)CrossRefGoogle Scholar
  69. 286.
    Hausdorff, F.: Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75(3), 428–433 (1914)MathSciNetCrossRefGoogle Scholar
  70. 288.
    Hedlund, G.A.: Endormorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)MathSciNetCrossRefGoogle Scholar
  71. 289.
    Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6), 827–864 (1992)MathSciNetCrossRefGoogle Scholar
  72. 302.
    Hughes, B.: Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189(1), 148–191 (2004)MathSciNetCrossRefGoogle Scholar
  73. 303.
    Hulanicki, A.: Means and Følner condition on locally compact groups. Stud. Math. 27, 87–104 (1966)MathSciNetCrossRefGoogle Scholar
  74. 305.
    Hurwitz, A.: Vorlesungen über die Zahlentheorie der Quaternionen. Springer, Berlin (1919)CrossRefGoogle Scholar
  75. 313.
    Johnson, B.E.: Cohomology in Banach Algebras. American Mathematical Society, Providence, RI (1972). Memoirs of the American Mathematical Society, No. 127CrossRefGoogle Scholar
  76. 314.
    Jørgensen, T.: A note on subgroups of sl(2, C). Q. J. Math. Oxf. Ser. (2) 28(110), 209–211 (1977)Google Scholar
  77. 317.
    Juschenko, K.: Amenability of discrete groups by examples (2015). Book draftGoogle Scholar
  78. 318.
    Juschenko, K., Monod, N.: Cantor systems, piecewise translations and simple amenable groups. Ann. Math. (2) 178(2), 775–787 (2013)MathSciNetCrossRefGoogle Scholar
  79. 319.
    Juschenko, K., Zhang, T.: Infinitely supported Liouville measures of Schreier graphs (2016). ArXiv:1608.03554Google Scholar
  80. 320.
    Juschenko, K., Matte Bon, N., Monod, N., de la Salle, M.: Extensive amenability and an application to interval exchanges (2015). ArXiv:1503.04977Google Scholar
  81. 321.
    Juschenko, K., Nekrashevych, V., de la Salle, M.: Extensions of amenable groups by recurrent groupoids. Invent. Math. 206(3), 837–867 (2016)MathSciNetCrossRefGoogle Scholar
  82. 323.
    Kaimanovich, V.A.: Amenability, hyperfiniteness, and isoperimetric inequalities. C. R. Acad. Sci. Paris Sér. I Math. 325(9), 999–1004 (1997)MathSciNetCrossRefGoogle Scholar
  83. 324.
    Kaimanovich, V.A.: Thompson’s group f is not Liouville (2016). ArXiv:1602.02971Google Scholar
  84. 325.
    Kaimanovich, V.A., Vershik, A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)MathSciNetCrossRefGoogle Scholar
  85. 326.
    Kakutani, S.: Two fixed-point theorems concerning bicompact convex sets. Proc. Imp. Acad. 14(7), 242–245 (1938)MathSciNetCrossRefGoogle Scholar
  86. 327.
    Kaplansky, I.: Problems in the theory of rings. Report of a conference on linear algebras, June, 1956, pp. 1–3. National Academy of Sciences-National Research Council, Washington, Publ. 502 (1957)Google Scholar
  87. 328.
    Kaplansky, I.: “Problems in the theory of rings” revisited. Am. Math. Mon. 77, 445–454 (1970)MathSciNetCrossRefGoogle Scholar
  88. 339.
    Každan, D.A.: On the connection of the dual space of a group with the structure of its closed subgroups. Funkcional. Anal. i Priložen. 1, 71–74 (1967)Google Scholar
  89. 340.
    Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)MathSciNetCrossRefGoogle Scholar
  90. 341.
    Kelley, J.L.: The Tychonoff product theorem implies the axiom of choice. Fundam. Math. 37, 75–76 (1950)MathSciNetCrossRefGoogle Scholar
  91. 345.
    Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)MathSciNetCrossRefGoogle Scholar
  92. 350.
    Kleiner, B.: A new proof of Gromov’s theorem on groups of polynomial growth. J. Am. Math. Soc. 23(3), 815–829 (2010)MathSciNetCrossRefGoogle Scholar
  93. 362.
    Krieger, F.: Le lemme d’Ornstein-Weiss d’après Gromov. In: Dynamics, Ergodic Theory, and Geometry. Mathematical Sciences Research Institute Publications, vol. 54, pp. 99–111. Cambridge University Press, Cambridge (2007)Google Scholar
  94. 368.
    Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)CrossRefGoogle Scholar
  95. 382.
    Lodha, Y.: An upper bound for the Tarski numbers of non amenable groups of piecewise projective homeomorphisms (2016). ArXiv:1604.05997Google Scholar
  96. 383.
    Lodha, Y., Moore, J.T.: A nonamenable finitely presented group of piecewise projective homeomorphisms. Groups Geom. Dyn. 10(1), 177–200 (2016)MathSciNetCrossRefGoogle Scholar
  97. 396.
    Machì, A., Mignosi, F.: Garden of Eden configurations for cellular automata on Cayley graphs of groups. SIAM J. Discret. Math. 6(1), 44–56 (1993)MathSciNetCrossRefGoogle Scholar
  98. 410.
    Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 17. Springer, Berlin (1991)CrossRefGoogle Scholar
  99. 412.
    Markov, A.A.: Quelques théorèmes sur les ensembles abeliens. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 1936(1), 311–313 (1936)Google Scholar
  100. 415.
    Meyerovitch, T.: Finite entropy for multidimensional cellular automata. Ergodic Theory Dyn. Syst. 28(4), 1243–1260 (2008)Google Scholar
  101. 418.
    Milnor, J.: Growth of finitely generated solvable groups. J. Differ. Geom. 2, 447–449 (1968)MathSciNetCrossRefGoogle Scholar
  102. 419.
    Milnor, J.: Problem 5603. Am. Math. Mon. 75(6), 685–686 (1968)Google Scholar
  103. 420.
    Mirsky, L.: Transversal Theory. An Account of Some Aspects of Combinatorial Mathematics. Mathematics in Science and Engineering, vol. 75. Academic Press, New York (1971)Google Scholar
  104. 421.
    Monod, N.: Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci. U. S. A. 110(12), 4524–4527 (2013)MathSciNetCrossRefGoogle Scholar
  105. 422.
    Monod, N., Popa, S.: On co-amenability for groups and von Neumann algebras. C. R. Math. Acad. Sci. Soc. R. Can. 25(3), 82–87 (2003)Google Scholar
  106. 423.
    Moore, E.F.: Machine models of self-reproduction. In: Mathematical Problems in the Biological Sciences. Proceedings of the Symposium in Applied Mathematics, vol. XIV, pp. 17–33. American Mathematical Society, Providence, RI (1962)Google Scholar
  107. 424.
    Morris, D.W.: Amenable groups that act on the line. Algebr. Geom. Topol. 6, 2509–2518 (2006)MathSciNetCrossRefGoogle Scholar
  108. 433.
    Myhill, J.: The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)MathSciNetzbMATHGoogle Scholar
  109. 438.
    Naor, A., Peres, Y.: Embeddings of discrete groups and the speed of random walks. Int. Math. Res. Not. IMRN pp. Art. ID rnn 076, 34 (2008)Google Scholar
  110. 439.
    Nash-Williams, C.S.J.A.: Random walk and electric currents in networks. Proc. Camb. Philos. Soc. 55, 181–194 (1959)MathSciNetCrossRefGoogle Scholar
  111. 441.
    Nekrashevych, V.V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence, RI (2005)Google Scholar
  112. 442.
    Nekrashevych, V.V.: Simple groups of dynamical origin (2015). ArXiv:1511.08241Google Scholar
  113. 446.
    Nikodym, O.: Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15, 358 (1930)Google Scholar
  114. 455.
    Olshanskiı̆, A. Y.: Infinite groups with cyclic subgroups. Dokl. Akad. Nauk SSSR 245(4), 785–787 (1979)Google Scholar
  115. 456.
    Olshanskiı̆, A.Y.: On the question of the existence of an invariant mean on a group. Uspekhi Mat. Nauk 35(4(214)), 199–200 (1980)Google Scholar
  116. 461.
    Ore, Ø.: Linear equations in non-commutative fields. Ann. Math. (2) 32(3), 463–477 (1931)MathSciNetCrossRefGoogle Scholar
  117. 462.
    Ornstein, D.S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)MathSciNetCrossRefGoogle Scholar
  118. 463.
    Osin, D.V.: Weakly amenable groups. In: Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001). Contemporary Mathematics, vol. 298, pp. 105–113. American Mathematical Society, Providence, RI (2002)Google Scholar
  119. 470.
    Paschke, W.L.: Lower bound for the norm of a vertex-transitive graph. Math. Z. 213(2), 225–239 (1993)MathSciNetCrossRefGoogle Scholar
  120. 471.
    Passman, D.S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. Wiley-Interscience, New York (1977)Google Scholar
  121. 474.
    Peres, Y., Zheng, T.: On groups, slow heat kernel decay yields Liouville property and sharp entropy bounds (2016). ArXiv:1609.05174Google Scholar
  122. 477.
    Pete, G.: Probability and geometry on groups (2015). Book in progressGoogle Scholar
  123. 490.
    Rado, R.: Note on the transfinite case of Hall’s theorem on representatives. J. Lond. Math. Soc. 42, 321–324 (1967)MathSciNetCrossRefGoogle Scholar
  124. 499.
    Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford (1968)zbMATHGoogle Scholar
  125. 515.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  126. 538.
    Seward, B.: Burnside’s problem, spanning trees and tilings. Geom. Topol. 18(1), 179–210 (2014)MathSciNetCrossRefGoogle Scholar
  127. 543.
    Shalom, Y.: The growth of linear groups. J. Algebra 199(1), 169–174 (1998)MathSciNetCrossRefGoogle Scholar
  128. 552.
    Stone, M.H.: Postulates for the barycentric calculus. Ann. Mat. Pura Appl. (4) 29, 25–30 (1949)MathSciNetCrossRefGoogle Scholar
  129. 557.
    Szwarc, R.: A short proof of the grigorchuk-cohen cogrowth theorem. Proc. Am. Math. Soc. 106(3), 663–665 (1989-07)MathSciNetCrossRefGoogle Scholar
  130. 558.
    Tamari, D.: A refined classification of semi-groups leading to generalised polynomial rings with a generalized degree concept. In: Proceedings of ICM, vol. 3, pp. 439–440, Amsterdam (1954)Google Scholar
  131. 560.
    Tatch Moore, J.: Hindman’s theorem, Ellis’s lemma, and Thompson’s group f. Zb. Rad. (Beogr.) 17(25)(Selected topics in combinatorial analysis), 171–187 (2015)Google Scholar
  132. 564.
    Tits, J.: Free subgroups in linear groups. J. Algebra 20(2), 250–270 (1972)MathSciNetCrossRefGoogle Scholar
  133. 565.
    Tointon, M.C.H.: Characterizations of algebraic properties of groups in terms of harmonic functions. Groups Geom. Dyn. 10(3), 1007–1049 (2016)MathSciNetCrossRefGoogle Scholar
  134. 576.
    von Neumann, J.: Zur allgemeinen Theorie des Masses. Fundam. Math. 13, 73–116 and 333 (1929). Collected works, vol. I, pages 599–643Google Scholar
  135. 577.
    von Neumann, J.: Einige sätze über messbare abbildungen. Ann. Math. (2) 33(3), 574–586 (1932)Google Scholar
  136. 581.
    Weiss, B.: On the work of V. A. Rokhlin in ergodic theory. Ergodic Theory Dyn. Syst. 9(4), 619–627 (1989)MathSciNetzbMATHGoogle Scholar
  137. 582.
    Weiss, B.: Sofic groups and dynamical systems. Sankhyā Ser. A 62(3), 350–359 (2000). Ergodic theory and harmonic analysis (Mumbai, 1999)Google Scholar
  138. 583.
    Weiss, B.: Monotileable amenable groups. In: Topology, Ergodic Theory, Real Algebraic Geometry. American Mathematical Society Translations Series 2, vol. 202, pp. 257–262. American Mathematical Society (2001)Google Scholar
  139. 584.
    Whyte, K.: Amenability, Bilipschitz equivalence, and the Von Neumann Conjecture. Duke Math. J. 99(1), 93–112 (1999)MathSciNetCrossRefGoogle Scholar
  140. 585.
    Willis, G.A.: Probability measures on groups and some related ideals in group algebras. J. Funct. Anal. 92(1), 202–263 (1990)MathSciNetCrossRefGoogle Scholar
  141. 587.
    Woess, W.: Random walks on infinite graphs and groups—a survey on selected topics. Bull. Lond. Math. Soc. 26, 1–60 (1994)MathSciNetCrossRefGoogle Scholar
  142. 588.
    Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.École Normale SupérieureParisFrance
  2. 2.Mathematical InstituteGeorg-August University of Göttingen, BunsenstrasseGöttingenGermany

Personalised recommendations