Advertisement

General Framework

  • Valérie Berthé
  • Michel Rigo
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

This introductory chapter briefly presents some of the main notions that appear in the subsequent chapters of this book. We recap a few definitions and results from combinatorics on groups and words, formal language theory, morphic words, k-automatic and k-regular sequences, and dynamical systems. Our aim is not to be exhaustive. The reader can consult this chapter when studying other parts of this book.

References

  1. 14.
    Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 15.
    Allouche, J.-P., Shallit, J.: The ring of k-regular sequences. II. Theor. Comput. Sci. 307(1), 3–29 (2003)Google Scholar
  3. 16.
    Allouche, J.-P., Shallit, J.O.: The ring of k-regular sequences. In: Choffrut, C., Lengauer, T. (eds.) STACS 90, Proceedings of the 7th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 415, pp. 12–23. Springer, Berlin (1990)CrossRefGoogle Scholar
  4. 18.
    Allouche, J.-P., Shallit, J.O.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, Proceedings of SETA ’98, pp. 1–16. Springer, London (1999)Google Scholar
  5. 36.
    Barat, G., Berthé, V., Liardet, P., Thuswaldner, J.: Dynamical directions in numeration. Ann. Inst. Fourier (Grenoble) 56(7), 1987–2092 (2006)MathSciNetCrossRefGoogle Scholar
  6. 75.
    Berstel, J., Karhumäki, J.: Combinatorics on words—a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 79, 178–228 (2003)Google Scholar
  7. 77.
    Berstel, J., Reutenauer, C.: Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications, vol. 137. Cambridge University Press, Cambridge (2011)Google Scholar
  8. 78.
    Berthé, V., Rigo, M. (eds.): Combinatorics, automata and number theory. Encyclopedia of Mathematics and Its Applications, vol. 135. Cambridge University Press, Cambridge (2010)Google Scholar
  9. 79.
    Berthé, V., Rigo, M. (eds.): Combinatorics, words and symbolic dynamics. Encyclopedia of Mathematics and Its Applications, vol. 159. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  10. 99.
    Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti Circ. Mat. Palermo 27, 247–271 (1909)Google Scholar
  11. 101.
    Borwein, J., Bailey, D.: Mathematics by Experiment, Plausible Reasoning in the 21st Century, 2nd edn. A. K. Peters, Ltd, Wellesley, MA (2008)Google Scholar
  12. 107.
    Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math. 24, 83–96 (1989)MathSciNetCrossRefGoogle Scholar
  13. 130.
    Carpi, A., Maggi, C.: On synchronized sequences and their separators. Theor. Inform. Appl. 35(6), 513–524 (2002) (2001)MathSciNetCrossRefGoogle Scholar
  14. 134.
    Cassaigne, J., Nicolas, F.: Quelques propriétés des mots substitutifs. Bull. Belg. Math. Soc. Simon Stevin 10(suppl.), 661–676 (2003)Google Scholar
  15. 146.
    Charlier, É., Leroy, J., Rigo, M.: Asymptotic properties of free monoid morphisms. Linear Algebra Appl. 500, 119–148 (2016)MathSciNetCrossRefGoogle Scholar
  16. 150.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, New York (1997)CrossRefGoogle Scholar
  17. 154.
    Cobham, A.: On the Hartmanis-Stearns problem for a class of tag machines. In: IEEE Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, pp. 51–60 (1968). Also appeared as IBM Research Technical Report RC-2178, August 23 1968Google Scholar
  18. 156.
    Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)MathSciNetCrossRefGoogle Scholar
  19. 167.
    Cornfeld, I.P., Fomin, S.V., Sinaı̆, Y.G.: Ergodic theory. Springer, New York (1982). Translated from the Russian by A.B. Sosinskiı̆Google Scholar
  20. 191.
    Delange, H.: Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseign. Math. 21, 31–47 (1975)Google Scholar
  21. 201.
    Dumas, P.: Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences. Linear Algebra Appl. 438(5), 2107–2126 (2013)MathSciNetCrossRefGoogle Scholar
  22. 202.
    Dumas, P.: Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated. Theor. Comput. Sci. 548, 25–53 (2014)MathSciNetCrossRefGoogle Scholar
  23. 211.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New York (1974)Google Scholar
  24. 227.
    Fraenkel, A.S.: Systems of numeration. Am. Math. Mon. 92, 105–114 (1985)MathSciNetCrossRefGoogle Scholar
  25. 298.
    Honkala, J.: On the simplification of infinite morphic words. Theor. Comput. Sci. 410(8-10), 997–1000 (2009)MathSciNetCrossRefGoogle Scholar
  26. 300.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)Google Scholar
  27. 301.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (1979)Google Scholar
  28. 348.
    Kitchens, B.P.: Symbolic dynamics, one-sided, two-sided and countable state Markov shifts. Universitext. Springer, Berlin (1998)Google Scholar
  29. 349.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)Google Scholar
  30. 381.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)Google Scholar
  31. 385.
    Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, vol. 17. Addison-Wesley, Reading (1983)Google Scholar
  32. 386.
    Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)Google Scholar
  33. 387.
    Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, vol. 105. Cambridge University Press, Cambridge (2005)Google Scholar
  34. 391.
    de Luca, A., Varricchio, S.: On the factors of the Thue-Morse word on three symbols. Inf. Process. Lett. 27, 281–285 (1988)Google Scholar
  35. 409.
    Mann, A.: How Groups Grow. Lecture Note Series, vol. 395. London Mathematical Society (2012)Google Scholar
  36. 466.
    Pansiot, J.J.: Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Inform. 20, 179–196 (1983)Google Scholar
  37. 467.
    Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) Proceedings of the 11th International Conference on Automata, Languages, and Programming (ICALP). Lecture Notes in Computer Science, vol. 172, pp. 380–389. Springer, Berlin (1984)CrossRefGoogle Scholar
  38. 468.
    Pansiot, J.J.: Subword complexities and iteration. Bull. Eur. Assoc. Theor. Comput. Sci. 26, 55–62 (1985)Google Scholar
  39. 475.
    Perrin, D.: Symbolic dynamics and finite automata. In: Wiedermann, J., Hájek, P. (eds.) Proceedings of the 20th Symposium, Mathematical Foundations of Computer Science 1995. Lecture Notes in Computer Science, vol. 969, pp. 94–104. Springer, Berlin (1995)Google Scholar
  40. 476.
    Perrin, D., Pin, J.E.: Infinite Words. Automata, Semigroups, Logic and Games. Elsevier/Academic Press, Amsterdam (2004)Google Scholar
  41. 487.
    Pytheas Fogg, N.: In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002)Google Scholar
  42. 488.
    Queffélec, M.: Substitution Dynamical Systems—Spectral Analysis. Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (1987)Google Scholar
  43. 489.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 115–125 (1959)MathSciNetCrossRefGoogle Scholar
  44. 503.
    Rigo, M.: Formal Languages, Automata and Numeration Systems, Applications to Recognizability and Decidability, vol. 2. ISTE, Wiley (2014)Google Scholar
  45. 504.
    Rigo, M.: Formal Languages, Automata and Numeration Systems, Introduction to Combinatorics on Words, vol. 1. ISTE, Wiley (2014)Google Scholar
  46. 518.
    Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003). English corrected edition: Elements of Automata Theory, Cambridge University Press, 2009Google Scholar
  47. 522.
    Schaeffer, D.G.L., Shallit, J.: Subword complexity and k-synchronization. In: Developments in Language Theory. 17th International Conference, DLT 2013, Marne-la-Vallée, France, June 18–21, 2013. Proceedings, no. 7907 in Lecture Notes in Computer Science, pp. 252–263. Springer, Berlin (2013)Google Scholar
  48. 539.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2008)Google Scholar
  49. 555.
    Sudkamp, T.A.: Languages and Machines, An Introduction to the Theory of Computer Science. Addison-Wesley, Reading (1997)Google Scholar
  50. 563.
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912). Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478Google Scholar
  51. 578.
    Wall, D.D.: Normal numbers. Ph.D. thesis, University of California, Berkeley, CA (1949)Google Scholar
  52. 579.
    Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982)CrossRefGoogle Scholar
  53. 590.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Berlin (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRIF, UMR 8243, CNRS & Université Paris DiderotParis Cedex 13France
  2. 2.Department of MathematicsUniversity of LiègeLiègeBelgium

Personalised recommendations