Skip to main content

Yeast Nutrition

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

  • 3164 Accesses

Abstract

The major raw materials employed for fermentation by yeast in the production of most beers and many potable and industrial spirits are barley, wheat, corn (maize), rice, sorghum, oats, sugar and its derivatives (from cane and beet). S. cerevisiae strains, including ale brewing and whisky distilling strains, have the ability to take up and ferment a wide range of sugars except melibiose. However, S. pastorianus (lager yeast) is able to utilize this disaccharide. In addition, S. diastaticus (a subspecies of S. cerevisiae) is also able to utilize dextrins (partially hydrolysed starch material). Maltose is the major fermentable sugar in brewer’s and distiller’s wort, and details concerning control of its uptake and subsequent metabolism are critical together with maltotriose. The uptake of sugars from distiller’s (whisky) wort is more complex than from brewer’s wort because it contains active enzymes, particularly amylases and proteinases. As well as fermentable sugars, nitrogen is an essential element for yeast growth and metabolism. Free amino nitrogen (FAN) is the grouping of wort nitrogenous compounds available for consumption by yeast. FAN is the sum of the individual wort amino acids, ammonium ions and small peptides (di-, tripeptides). Wort contains 20 free amino acids, and they are taken up into yeast cells in a set order. This uptake has a direct influence on beer or spirit flavours. The optimization of wort nitrogen content is a complex issue because of the large number of nitrogen compounds in malt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams J (2004) Microbial evolution in laboratory environments. Res Microbiol 155:311–318

    Article  CAS  PubMed  Google Scholar 

  • Alves SL Jr, Herberts RA, Hollatz C, Trichez D, Miletti LC, de Araujo PS, Stambuk BU (2008) Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74:1494–1501

    Google Scholar 

  • Bathgate GN (2016) A review of malting and malt processing for whisky distillation. J Inst Brew 122:197–211

    Article  CAS  Google Scholar 

  • Batistote M, Da Cruz SH, Ernandes JR (2006) Altered patterns of maltose and glucose fermentation by brewing and wine yeasts influenced by the complexity of nitrogen source. J Inst Brew 112:84–91

    Article  CAS  Google Scholar 

  • Baxter ED (1995) The application of genetics in brewing. Fermentation 8:307–311

    Google Scholar 

  • Bisson LF, Fraenkel DG (1984) Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J Bacteriol 159:1013–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson LF, Coons DM, Kruckeberg AL, Lewis DA (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28:259–308

    Article  CAS  PubMed  Google Scholar 

  • Boulton CA, Quain DE (2001) Brewing yeast and fermentation. Blackwell Science, Oxford

    Google Scholar 

  • Calderbank J, Rose AH, Tubb RS (1986) Peptide removal from all malt and adjunct worts by Saccharomyces cerevisiae. J Inst Brew 91:321–324

    Article  Google Scholar 

  • Clapperton JF (1971) Simple peptides of wort and beer. J Inst Brew 77:177–180

    Article  CAS  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (2000) Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J Inst Brew 106:197–201

    Article  Google Scholar 

  • Cousseau FEM, Alves SL Jr, Trichezl D, Stambuk BU (2012) Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70. Lett Appl Microbiol 56:21–29

    Article  PubMed  CAS  Google Scholar 

  • Crumplen RM, Slaughter JC, Stewart GG (1996) Characteristics of maltose transporter activity in an ale and lager strain of the yeast Saccharomyces cerevisiae. Lett Appl Microbiol 23:448–452

    Article  CAS  PubMed  Google Scholar 

  • Cruz SH, Batistote M, Ernandes JR (2003) Effect of sugar catabolite repression in correlation with the structural complexity of the nitrogen source on yeast growth and fermentation. J Inst Brew 109:349–355

    Article  Google Scholar 

  • D’Amore T, Russell I, Stewart GG (1989) Sugar utilization by yeast during fermentation. J Ind Microbiol 4:315–324

    Article  Google Scholar 

  • Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002) Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Ernandes JR, D’Amore T, Russell I, Stewart GG (1992) First online: Regulation of glucose and maltose transport in strains of Saccharomyces. J Ind Microbiol 9:127–130

    Article  CAS  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993) Effect of yeast adaptation to maltose utilization on sugar uptake during the fermentation of brewer’s wort. J Inst Brew 99:67–71

    Article  CAS  Google Scholar 

  • Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to use dextrins. J Am Soc Brew Chem 36:151–161

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1980) Genetic and biochemical studies on glucoamylase from Saccharomyces diastaticus. In: Stewart GG, Russell I (eds) Advances in biotechnology, current developments in yeast research. Pergamon Press, Toronto, pp 177–183

    Google Scholar 

  • Fukuyo S, Myojo Y (2014) Chap. 3: Japanese whisky. In: Russell I, Stewart GG (eds) Whisky: technology, production and marketing, 2nd edn. Elsevier, Boston, MA

    Google Scholar 

  • Gibson BR, Londesborough J, Rautio J, Mattinen L, Vidgren V (2013) Transcription of α-glucoside transport and metabolism genes in the hybrid brewing yeast Saccharomyces pastorianus with respect to gene provenance and fermentation temperature. J Inst Brew 119:23–31

    Article  CAS  Google Scholar 

  • Gorinstein S, Zemser M, Vargas-Albores F, Ochoa JL, Paredes-Lopez O, Scheler C, Salnikow J, Martin-Belloso O, Trakhtenberg S (1999) Proteins and amino acids in beers, their contents and relationships with other analytical data. Food Chem 67:71–78

    Article  CAS  Google Scholar 

  • Gray A (2013) The Scotch Whisky Industry review, 36th edn. Sutherlands, Edinburgh

    Google Scholar 

  • Grenson M (1983) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem 133:141–144

    Article  CAS  PubMed  Google Scholar 

  • Grenson M, Acheroy B (1982) Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Localisation of the cis-acting dominant pgr regulatory mutation in the structural gene of this permease. Mol Gen Genet 188:261–265

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PMR, Virtanen H, Londesborough J (2006) Direct evidence that maltose transport activity is affected by the lipid composition of brewer’s yeast. J Inst Brew 112:203–209

    Article  Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeasts for the 21st century: progress to date. Yeast 11:1613–1627

    Article  CAS  PubMed  Google Scholar 

  • Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general a-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Hertrich J (2013) Topics in brewing: brewing adjuncts. MBAA Tech Quart 50:72–81

    CAS  Google Scholar 

  • Holmes AR, Collings A, Farnden KJF, Shepherd MG (1989) Ammonium assimilation in Candida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol 135:1423–1430

    CAS  PubMed  Google Scholar 

  • Ingledew WM, Patterson CA (1999) Effect of nitrogen source and concentration on the uptake of peptides by a lager yeast in continuous culture. J Am Soc Brew Chem 57:9–17

    CAS  Google Scholar 

  • Inoue T, Kashihara T (1995) The importance of indices related to nitrogen metabolism in fermentation control. MBAA Tech Quart 32:109–113

    CAS  Google Scholar 

  • Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T (1995) Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231:845–854

    Article  CAS  PubMed  Google Scholar 

  • Island MD, Naider F, Becker JM (1987) Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations. J Bacteriol 169:2132–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 31(190):39–44

    Article  Google Scholar 

  • Jespersen L, Cesar LB, Meaden PG, Jakobsen M (1999) Multiple α-glucoside transporter genes in brewer’s yeast. Appl Environ Microbiol 65:450–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Ferguson K, Bond M, Kavanagh T, Hawthorne D (1996) Malt nitrogen parameters and yeast fermentation behavior. In: Proceedings of the 24th convention. The Institute of Brewing, Asia Pacific Section, Singapore, pp 44–50

    Google Scholar 

  • Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 181–299

    Google Scholar 

  • Jones M, Pierce J (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:307–315

    Article  CAS  Google Scholar 

  • Jones M, Pierce J (1965) Nitrogen requirements in wort – practical applications. In: Proceedings of European brewery convention congress, Stockholm. Elsevier Scientific, Amsterdam, pp 182–194

    Google Scholar 

  • Jones M, Pragnell MJ, Pierce JS (1969) Absorption of amino acids by yeasts from a semi-defined medium simulating wort. J Inst Brew 75:520–536

    Article  CAS  Google Scholar 

  • Jones RM, Russell I, Stewart GG (1986) The use of catabolite derepression as a means of improving the fermentation rate of brewing yeast strains. J Am Soc Brew Chem 44:161–166

    CAS  Google Scholar 

  • Jones RM, Russell I, Stewart GG (1987) Classical genetic and protoplast fusion techniques in yeast. In: Berry DR, Russell I, Stewart GG (eds) Yeast biotechnology, pp 55–79

    Google Scholar 

  • Kapral D (2008) Stratified fermentation – causes and corrective actions. MBAA Tech Quart 45:115–120

    Google Scholar 

  • Kilonzo PM, Margaritis A, Bergougnou MA (2008) Effect of medium composition on glucoamylase production during batch fermentation of recombinant Saccharomyces cerevisiae. J Inst Brew 114:83–96

    Article  CAS  Google Scholar 

  • Kirsop BH (1974) Oxygen in brewery fermentations. J Inst Brew 80:252–259

    Article  CAS  Google Scholar 

  • Kodama Y, Fukui N, Ashikari T, Shibano Y, Morioka-Fujimoto K, Hiraki Y, Nakatani K (1995) Improvement of maltose fermentation efficiency: constitutive expression of MAL genes in brewing yeasts. J Am Soc Brew Chem 53:24–29

    CAS  Google Scholar 

  • Krogerus K, Gibson BR (2013) Diacetyl and its control during brewing fermentation: 125th anniversary review. J Inst Brew 119:86–97

    CAS  Google Scholar 

  • Lacerda V, Marsden A, Buzato J.B, Ledingham WM (1990) Studies on ammonium assimilation in continuous culture of Saccharomyces cerevisiae under carbon and nitrogen limitation, In: Christiansen C, Munck L, Villadsen J (eds) Proceedings of 5th European congress on biotechnology, 305. Munksgaard International, Copenhagen, pp 1075-1078

    Google Scholar 

  • Latorre-García L, Adam AC, Polaina J (2008) Overexpression of the glucoamylase-encoding STA1 gene of Saccharomyces cerevisiae var. diastaticus in laboratory and industrial strains of Saccharomyces. World J Microbiol Biotechnol 24:2957–2963

    Article  CAS  Google Scholar 

  • Leiper KA, Stewart GG, McKeown IP (2003a) Beer polypeptides and silica gel. Part I. Polypeptides involved in haze formation. J Inst Brew 109:57–72

    Article  CAS  Google Scholar 

  • Leiper KA, Stewart GG, McKeown IP (2003b) Beer polypeptides and silica gel. Part II. Polypeptides involved in foam formation. J Inst Brew 109:77–79

    Google Scholar 

  • Lekkas C, Stewart GG, Hill A, Taidi B, Hodgson J (2005) The importance of free amino nitrogen in wort and beer. MBAA Tech Quart 42:113–116

    CAS  Google Scholar 

  • Lekkas C, Stewart GG, Hill AE, Taidi B, Hodgson J (2007) Elucidation of the role of nitrogenous wort components in yeast fermentation. J Inst Brew 113:3–11

    Article  CAS  Google Scholar 

  • Lekkas C, Hill AE, Taidi B, Hodgson J, Stewart GG (2009) The role of small peptides in brewing fermentation. J Inst Brew 115:134–139

    Article  CAS  Google Scholar 

  • Lekkas C, Hill AE, Stewart GG (2014) Extraction of FAN from malting barley during malting and mashing. J Am Soc Brew Chem 72:6–11

    CAS  Google Scholar 

  • Lie S (1973) The EBC-ninhydrin method for determination of free alpha amino nitrogen. J Inst Brew 79:37–41

    Article  CAS  Google Scholar 

  • Lyness CA, Jones CR, Meaden PG (1993) The STA2 and MEL1 genes of Saccharomyces cerevisiae are idiomorphic. Curr Genet 23:92–94

    Article  CAS  PubMed  Google Scholar 

  • Lyons TP (2014) Chap. 5, North American whiskies: a story of evolution, experience, and an ongoing entrepreneurial spirit. In: Russell I, Stewart G (eds) Whisky: technology, production and marketing, 2nd edn. Elsevier, Boston, MA, pp 39–48

    Chapter  Google Scholar 

  • Macwilliam JC, Clapperton JF (1969) Dynamic aspects of nitrogen metabolism in yeast. In: Proceedings of European brewery convention congress, Interlaken. Fachverlag Hans Carl, Nürnberg, pp 271–279

    Google Scholar 

  • Maddox SJ, Hough JS (1970) Proteolytic enzyme of Saccharomyces carlsbergensis. Biochem J 117:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Jones E, Pringle JR, Broach JR (eds) Molecular and cellular biology of the yeast, Saccharomyces cerevisiae, vol II, Gene expression. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 283–317

    Google Scholar 

  • Marder R, Becker JM, Naider F (1977) Peptide transport in yeast: utilization of leucine and lysine containing peptides by Saccharomyces cerevisiae. J Bacteriol 131:906–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messenguy F, Colin D, Ten Have J-P (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem 108:439–447

    Article  CAS  PubMed  Google Scholar 

  • Moneton P, Sarthou P, Le Goffic F (1986) Role of the nitrogen source in peptide transport in Saccharomyces cerevisiae. Fed Eur Microbiol Microbiol Lett 36:95–98

    Article  CAS  Google Scholar 

  • Murray D (2014) Chap. 10, Grain whisky distillation. In: Russell I, Stewart G (eds) Whisky: technology, production and marketing, 2nd edn. Elsevier, Boston, MA

    Google Scholar 

  • Murray CR, Barich T, Taylor D (1984) The effect of yeast storage conditions on subsequent fermentations. MBAA Tech Quart 21:189–195

    CAS  Google Scholar 

  • Narziss L (1984) The German beer laws. J Inst Brew 90:351–358

    Article  CAS  Google Scholar 

  • Naseeb S, James SA, Alsammar H, Michaels CJ, Gini B, Nueno-Palop C, Bond CJ, McGhie H, Roberts IN, Delneri D (2017) Saccharomyces jurei sp. isolation and genetic identification of a novel yeast species from Quercus robur. Int J Syst Evol Microbiol 67:2046–2052

    Article  PubMed  Google Scholar 

  • Novak ST, D’Amore T, Russell I, Stewart GG (1990a) Characterization of sugar transport in 2-Deoxy-D-glucose resistant mutants of yeast. J Ind Microbiol 6:149–155

    Article  CAS  Google Scholar 

  • Novak ST, D’Amore T, Stewart GG (1990b) 2-Deoxy-D-glucose resistant yeast with altered sugar transport activity. FEBS Lett 269:202–204

    Article  CAS  PubMed  Google Scholar 

  • Novak ST, D’Amore T, Russell I, Stewart GG (1991) Sugar uptake in a 2-deoxy-D-glucose resistant mutant of Saccharomyces cerevisiae. J Ind Microbiol 7:35–40

    Article  CAS  Google Scholar 

  • O’Connor-Cox ESC, Ingledew WM (1989) Wort nitrogenous sources – their use by brewing yeasts: a review. J Am Soc Brew Chem 47:102–108

    Google Scholar 

  • Ogata T, Iwashita Y, Kawada T (2017) Construction of a brewing yeast expressing the glucoamylase gene STA1 by mating. J Inst Brew 123:66–69

    Article  CAS  Google Scholar 

  • Owades JL, Koch CJ (1989) Preparation of low calorie beer. US Patent 4837034

    Google Scholar 

  • Palmquist U, Ayrapaa T (1969) Uptake of amino acids in bottom fermentations. J Inst Brew 75:181–190

    Article  Google Scholar 

  • Panchal CJ, Russell I, Sills AM, Stewart GG (1984) Genetic manipulation of brewing and related yeast strains. Food Technol 38:99–106

    CAS  Google Scholar 

  • Perry JR, Basrai MA, Steiner HY, Naider F, Becker JM (1994) Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol 14:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickerell ATW (1986) The influence of free alpha-amino nitrogen in sorghum beer fermentations. J Inst Brew 92:568–571

    Article  CAS  Google Scholar 

  • Pierce J (1987) The IBD Horace Brown Medal Lecture: The role of nitrogen in brewing. J Inst Brew 95:378–381

    Article  Google Scholar 

  • Piña B, Casso D, Orive M, Fité B, Torrent J, Vidal JF (2007) A new source to obtain lager yeast strains adapted to very high gravity brewing: 2-deoxy-D-glucose resistant colonies with fermentative capacity up to 25°Plato. In: Proceedings of European brewery convention congress, Venice. Verlag Hans Carl Getränke-Fachverlag, Nürnberg, CD ROM, Contribution 45

    Google Scholar 

  • Pugh TA, Maurer JM, Pringle AT (1997) The impact of wort nitrogen limitation on yeast fermentation performance and diacetyl. MBAA Tech Quart 34:185–189

    CAS  Google Scholar 

  • Quinn D (2014) Chap. 2: Irish whiskey. In: Russell I, Stewart G (eds) Whisky: technology, production and marketing, 2nd edn. Elsevier, Boston, MA, pp 7–16. isbn:978-0-12-401735-1

    Google Scholar 

  • Rautio J, Londesborough J (2003) Maltose transport by brewer’s yeasts in brewer’s wort. J Inst Brew 109:251–261

    Article  CAS  Google Scholar 

  • Roberts T, Wilson R (2006) Chap. 7: Hops. In: Priest FG, Stewart GG (eds) Handbook of brewing, 2nd edn, pp 177–279

    Google Scholar 

  • Russell I, Stewart GG (2014) Distilling yeast and fermentation. In: Russell I, Stewart GG (eds) Whisky: technology, production and marketing, 2nd edn. Elsevier, Boston, MA, pp 123–143

    Chapter  Google Scholar 

  • Russell I, Hancock IF, Stewart GG (1983) Construction of dextrin fermentative yeast strains that do not produce phenolic off-flavours in beer. J Am Soc Brew Chem 41:45–51

    CAS  Google Scholar 

  • Russell I, Crumplen GM, Jones RM, Stewart GG (1986) Efficiency of genetically engineered yeast in the production of ethanol from dextinized cassava starch. Biotechnol Lett 8:169–174

    Article  CAS  Google Scholar 

  • Salema-Oom M, Pinto VV, Gonçalves P, Spencer-Martins I (2005) Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the α-glucoside transporter family. Appl Environ Microbiol 71:5044–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salema-Oom M, de Sousa HR, Assumcao M, Gonçalves P, Spencer-Martins I (2011) Derepression of a baker’s yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression. J Appl Microbiol 110:364–374

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. In: Guthrie C, Fink GR (eds) Methods in enzymology, vol 194 Guide to yeast genetics and molecular biology. Academic Press, New York, pp 3–21

    Google Scholar 

  • Sills AM, Stewart GG (1985) Studies on cellobiose metabolism by yeasts. Dev Ind Microbiol 26:527–534

    CAS  Google Scholar 

  • Stewart GG (1981) The genetic manipulation of industrial yeast strains. Can J Microbiol 27:973–990

    Article  CAS  Google Scholar 

  • Stewart GG (1987) The biotechnological relevance of starch-degrading enzymes. CRC Crit Rev Biotechnol 5:89–93

    Article  CAS  Google Scholar 

  • Stewart GG (2006) Studies on the uptake and metabolism of wort sugars during brewing fermentations. MBAA Tech Quart 43:264–269

    Google Scholar 

  • Stewart GG (2009) The IBD Horace Brown Medal Lecture – forty years of brewing research. J Inst Brew 115:3–29

    Article  CAS  Google Scholar 

  • Stewart GG (2010a) Wort glucose, maltose or maltotriose – do brewer’s yeast strains care which one? In: Proceedings of 31st convention of the Institute of Brewing (Asia Pacific Section), Gold Coast, Paper No. 4

    Google Scholar 

  • Stewart GG (2010b) A love affair with yeast. MBAA Tech Quart 47:4–11

    Google Scholar 

  • Stewart GG (2012) Flaked barley. The Oxford companion to beer. Oxford University Press, New York, pp 357–358

    Google Scholar 

  • Stewart GG (2014) High-gravity brewing. In: Brewing intensification. American Society of Brewing Chemsits, St. Paul, MN, pp 7–39

    Google Scholar 

  • Stewart GG (2016) Adjuncts. In: Bamforth CW (ed) Brewing materials and processes. Academic Press, Elsevier, Boston, MA, pp 27–46

    Google Scholar 

  • Stewart GG, Murray J (2011) Using brewing science to make good beer. MBAA Tech Quart 48:13–19

    CAS  Google Scholar 

  • Stewart GG, Priest FG (2006) Chap. 6: Adjuncts (pp 161–176) and Chap. 19: Beer stability (pp 715–728). In: Priest FG, Stewart GG (eds) Handbook of brewing, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Stewart GG, Russell I (2009) An introduction to science and technology. Series III: Brewer’s yeast, 2nd edn. The Institute of Brewing and Distilling, London

    Google Scholar 

  • Stewart GG, Russell I, Panchal CJ (1988) Genetically stable allopolyploid somatic fusion product useful in the production of fuel alcohols. US Patent 4,772,556

    Google Scholar 

  • Stewart GG, Zheng X, Russell I (1995) Wort sugar uptake and metabolism – the influence of genetic and environmental factors. In: Proceedings of 25th European brewery convention congress, Brussels, pp 403–410

    Google Scholar 

  • Stewart GG, Hill A, Lekkas C (2013) Wort FAN – its characteristics and importance during fermentation. J Am Soc Brew Chem 71:179–185

    CAS  Google Scholar 

  • Surdin Y, Sly W, Sire J, Bordes AM, Robichon-Szulmajster H (1965) Propriétés et contrôle génétique du système d’accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta 107:546–566

    Article  CAS  PubMed  Google Scholar 

  • Tamaki H (1978) Genetic studies of ability to ferment starch in Saccharomyces: gene polymorphism. Mol Gen Genet 164:205–209

    Article  Google Scholar 

  • ter Schure EG, van Reil NAW, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. Fed Eur Microbiol Soc Microbiol Rev 24:67–83

    Google Scholar 

  • Thorne RSW (1949) Nitrogen metabolism of yeast. A consideration of the mode of assimilation of amino acids. J Inst Brew 50:201–222

    Article  Google Scholar 

  • Vidgren V, Ruohonen L, Londesborough J (2007) Lager yeasts lack AGT1 transporters, but transport maltose at low temperatures faster than ale yeasts. In: Proceedings of 31st European brewery convention congress, Venice, vol 46, 6–10 May 2007. Fachverlag Hans Carl, Nurnberg, pp 438–444

    Google Scholar 

  • Vidgren V, Huuskonen A, Virtanen H, Ruohonen L, Londesborough J (2009) Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl Environ Microbiol 75:2333–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidgren V, Rautio J, Mattinen L, Gibson B, Londesborough J (2013) A new maltose/maltotriose transporter (Saccharomyces eubayanus –type Agt1) in lager yeast and its relevance to fermentation performance. In: 34th EBC congress, Luxembourg, pp 26–30

    Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, Chichester

    Google Scholar 

  • Wang JJ, Xiu PH (2010) Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor. J Microbiol Biotechnol 20:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Whitney GK, Murray CR, Russell I, Stewart GG (1985) Potential cost savings for fuel ethanol production by employing a novel hybrid yeast strain. Biotechnol Lett 7:349–354

    Article  CAS  Google Scholar 

  • Wiame JM, Grenson M, Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

    Google Scholar 

  • Wickerham LJ (1971) Genus 7. Hanseluna H. et P. Sydow. In: Lodder J (ed) The yeasts, 2nd edn. North Holland, Amsterdam, London, pp 247–253

    Google Scholar 

  • Wiedmeier VT, Porterfield SP, Hendrich CE (1982) Quantitation of DNS-amino acids from body tissues and fluids using high-performance liquid chromatography. J Chromatogr 231:410–417

    Article  CAS  PubMed  Google Scholar 

  • Wiemken A (1980) Compartmentation and control of amino acid utilization in yeast. In: Nover L, Lynen F, Mothes K (eds) Cell compartmentation and metabolic channeling. VEB Gustav Fischer Verlag, Jena (GDR) and Elsevier/North Holland Biomedical Press, Amsterdam, pp 225–237

    Google Scholar 

  • Winkelmann L (2016) 500 years of beer purity law. Brauwelt Int 34:188

    Google Scholar 

  • Woodward JR, Cirillo VP (1977) Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. J Bacteriol 130:714–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota H, Sahar H, Koshino S (1993) Fractionation and quantitation of oligopeptides in beer and wort. J Am Soc Brew Chem 51:54–57

    Google Scholar 

  • Zheng X, D’Amore T, Russell I, Stewart GG (1994a) Transport kinetics of maltotriose in strains of Saccharomyces. J Ind Microbiol 13:159–166

    Article  Google Scholar 

  • Zheng X, D’Amore T, Russell I, Stewart GG (1994b) Factors influencing maltotriose utilization during brewery wort fermentations. J Am Soc Brew Chem 52:41–47

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Yeast Nutrition. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_7

Download citation

Publish with us

Policies and ethics