Skip to main content

The Structure and Function of the Yeast Cell Wall, Plasma Membrane and Periplasm

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

The exterior of each yeast cell consists of a distinct wall and a plasma membrane with a space (the periplasm) in between the two. The cell wall is a dynamic organelle that determines the cell shape and integrity of the organism during growth and cell division. It provides the cell with mechanical strength in order to withstand changes in osmotic pressure imposed by the environment and other stresses. The chemical composition and structural aspects of the S. cerevisiae cell have been known for some time. The plasma membrane of yeast cells (specifically Saccharomyces spp.) forms the barrier between the cytoplasm and the cell wall. The plasma membrane consists principally of lipids and protein in approximately equal proportions. As a result of the large number of functions that it performs, most of the membrane proteins are functional and not structural. It has several distinct roles: a barrier to the free diffusion of solutes, catalyse specific change reactions, store energy as transmembrane ions and solute gradients, regulate the rate of energy dissipation, provide sites to bind specific molecules for catabolic signalling pathways and provide sites of enzyme pathways involved in the biosynthesis of cell components. The periplasm is not a continuous space because of interrupting invaginations in the plasma membrane and irregularities in the inner surface of the cell wall. The periplasm is not an organelle as such. It is the location where a number of important yeast enzymes are located and active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    Google Scholar 

  • Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Haq I (2007) Kinetics of improved extracellular β-D-fructofuranosidase fructohydrolase production by a derepressed Saccharomyces cerevisiae. Lett Appl Microbiol 45:160–167

    Article  CAS  PubMed  Google Scholar 

  • Alimardani P, Regnacq M, Moreau-Vauzelle C, Rossignol T, Blondin B, Bergès T (2004) SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Biochem J 381:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold WN (1991) Periplasmic space. In: Rose AH, Harrison JS (eds) The yeasts, vol 4. Academic Press, London, pp 279–293

    Google Scholar 

  • Baladrón V, Ufano S, Duenas EV, Martín-Cuadrado AB, del Rey F, Vázquez de Aldana CR (2002) Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1:774–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Biggs P, Parsons C, Fahey G (2007) The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Sci 86:2327–2336

    Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, Hellingwerf KJ, Klis FM (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21:413–427

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Waneck GL (1992) Glycosyl-phosphatidylinositol-anchored membrane proteins. J Am Soc Nephrol 3:895–906

    CAS  PubMed  Google Scholar 

  • Bühler M, Mohn F, Stalder L, Mühlemann O (2005) Transcriptional silencing of nonsense codon - containing Ig minigenes. Mol Cell 18:307–317

    Article  PubMed  Google Scholar 

  • Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2:886–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabib E (2004) The septation apparatus, a chitin-requiring machine in budding yeast. Arch Biochem Biophys 426:201–207

    Google Scholar 

  • Cabib E, Durán A (2005) Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast. J Biol Chem 280:9170–9179

    Article  CAS  PubMed  Google Scholar 

  • Cabib E, Roh D-H, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682

    Article  CAS  PubMed  Google Scholar 

  • Cappellaro C, Hauser K, Mrsa V, Watzele M, Watzele G, Gruber C, Tanner W (1991) Saccharomyces cerevisiae a-agglutinin and α-agglutinin: characterization of their molecular interaction. EMBO J 10:4081–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellaro C, Baldermann C, Rachel R, Tanner W (1994) Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and a-agglutinin. EMBO J 13:4737–4744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 18:5030–5037

    Google Scholar 

  • Caro LHP, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  CAS  PubMed  Google Scholar 

  • Caro LHP, Smits GJ, Van Egmond P, Chapman JW, Klis FM (1998) Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol Lett 161:345–349

    Article  CAS  PubMed  Google Scholar 

  • Castillo L, Martinez AI, Garcera A, Elorza MV, Valentín E, Sentandreu R (2003) Functional analysis of the cysteine residues and the repetitive sequence of Saccharomyces cerevisiae Pir4/Cis3: the repetitive sequence is needed for binding to the cell wall β-1,3-glucan. Yeast 20:973–983

    Article  CAS  PubMed  Google Scholar 

  • Chlup PH, Stewart GG (2011) Centrifuges in brewing. MBAA Tech Quart 48:13–19

    Google Scholar 

  • Chlup PH, Wang T, Lee EG, Stewart GG (2007) Assessment of the physiological status of yeast during high- and low-gravity wort fermentations determined by flow cytometry. MBAA Tech Quart 44:286–295

    CAS  Google Scholar 

  • Cleves AE, Cooper DNW, Barondes SH, Kelly RB (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Cohen BD, Sertil O, Abramova NE, Davies KJA, Lowry CV (2001) Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Res 29:799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Dague E, Bitar R, Ranchon H, Durand F, Yken HM, François JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684

    Article  CAS  PubMed  Google Scholar 

  • De Groot PW, Ruiz C, Vázquez de Aldana CR, Duenas E, Cid VJ, Del Rey F, Rodríquez-Peña JM, Pérez P, Andel A, Caubín J, Arroyo J, García JC, Gil C, Molina M, García LJ, Nombela C, Klis FM (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genom 2:124–142

    Article  Google Scholar 

  • De Groot PWJ, De Boer AD, Cunningham J. De Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965

    Google Scholar 

  • De Groot PWJ, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    Article  PubMed  Google Scholar 

  • De Groot MJ, Daran-Lapujade P, Van Breukelen B (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    Article  PubMed  Google Scholar 

  • De Nobel JG, Klis FM, Priem J, Munnik T, Van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499

    Article  PubMed  Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J Anim Sci 87:3226–3234

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeast. Academic Press, New York, pp 199–277

    Google Scholar 

  • Fujii T, Shimoi H, Iimura Y (1999) Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim Biophys Acta 1427:133–144

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Bermejo C, Grau C, Pérez R, Rodríguez-Peña JM, Francois J, Nombela C, Arroyo J (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signalling pathway. J Biol Chem 279:15183–15195

    Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  PubMed  Google Scholar 

  • Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W, Strahl S (2004) Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52:1413–1425

    Article  CAS  PubMed  Google Scholar 

  • Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K (1999) Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181:3886–3889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartland RP, Vermeulen CA, Klis FM, Sietsma JH, Wessels JG (1994) The linkage of (1–3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Google Scholar 

  • Heinisch JJ (2005) Baker's yeast as a tool for the development of antifungal kinase inhibitors—targeting protein kinase C and the cell integrity pathway. Biochim Biophys Acta 1754:171–182

    Google Scholar 

  • Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, and Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Google Scholar 

  • Jones RM, D'Amore A, Russell I, Stewart GG (1987) The use of spheroplast fusion to improve yeast osmotolerance. J Am Soc Brew Chem 48:0058

    Google Scholar 

  • Kapteyn JC, Ram AFJ, Groos EMJ, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of β 1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β 1,3-glucan content. J Bacteriol 179:6279–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapteyn J, Van Egmond P, Sievi E, Ende VD, Makarow M, Klis FM (1999) The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1,6-glucan-de¢cient mutants. Mol Microbiol 31:1835–1844

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  CAS  PubMed  Google Scholar 

  • Kitagaki H, Shimoi H, Itoh K (1997) Identification and analysis of a static culture-specific cell wall protein, Tir1p/Srp1p in Saccharomyces cerevisiae. Eur J Biochem 249:343–349

    Article  CAS  PubMed  Google Scholar 

  • Kitagaki H, Wu H, Shimoi H, Ito K (2002) Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Kitagaki H, Ito K, Shimoi H (2004) A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot Cell 3:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    Article  CAS  PubMed  Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. β(1–6)-glucan interconnects mannoprotein, β(1–3)-glucan, and chitin. J Biol Chem 272:17762–17775

    Article  PubMed  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display – applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  PubMed  Google Scholar 

  • Kuo S, Yamamoto S (1975) Preparation and growth of yeast protoplasts. Methods Cell Biol 11:169–183

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski S, Thielen U, Glenny P, Moran C (2009) A study of Saccharomyces cerevisiae cell wall glucans. Inst Brew Distil 115:151–158

    Article  CAS  Google Scholar 

  • Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, François J (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Basu A, Sengupta S, Banerjee S, Dutta T, Soren D, Chattopadhyay K, Ghosh AK (2012) Purification and characterization of a trehalase-invertase enzyme with dual activity from Candida utilis. Arch Biochem Biophys 522:90–99

    Article  CAS  PubMed  Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister's shadow. Fungal Biol Rev 24:17–26

    Article  Google Scholar 

  • Le Dividich J, Martel-Kennes Y, Coupel A (2009) Bio-Mos in diets for sows: effects on piglet performance. J Rech Porcine 41:249–250

    Google Scholar 

  • Lessage G, Bussey H (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Google Scholar 

  • Lyons TP, Hough JS (1970) Flocculation of brewer’s yeast. J Inst Brew 76:564–571

    Article  CAS  Google Scholar 

  • Mamvura TA, Paterson AE, Fanucchi D (2016) The impact of pipe geometry variations on hygiene and success of orbital welding of brewing industry equipment. J Inst Brew 123:81–97

    Article  Google Scholar 

  • Mol PC, Wessels JGH (1987) Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucan in walls of Saccharomyces cerevisiae. FEMS Microbiol Lett 41:95–99

    Article  CAS  Google Scholar 

  • Molina M, Gil C, Pla J, Arroyo J, Nombela C (2000) Protein localisation approaches for understanding yeast cell wall biogenesis. Microsc Res Technol 51:601–612

    Article  CAS  Google Scholar 

  • Montijn RC, Vink E, Muller WH, Verkleij AJ, Van Den Ende H, Henrissat B, Klis FM (1999) Localization of synthesis of β1,6-glucan in Saccharomyces cerevisiae. J Bacteriol 181:7414–74120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GJ, Winters L, Coulson GE, Clarke KJ (1986) Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J Gen Microbiol 132:2023–2034

    CAS  PubMed  Google Scholar 

  • Orlean P (1997) Biogenesis of yeast wall and surface components. In: Pringle JR, Broach JR, Jones EW (eds) Molecular and cellular biology of the yeast Saccharomyces, vol. 3 Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, pp 229–362

    Google Scholar 

  • Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233

    Google Scholar 

  • Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Oyofo BA, DeLoach JR, Corrier DE, Norman JO, Zipren RL, Mollenhauer HH (1989) Effect of carbohydrates on Salmonella typhimurium colonization in broiler chickens. Avian Dis 531–534

    Google Scholar 

  • Parks CW, Grimes JL, Ferket PR (2005) Effects of virginiamycin and a mannanoligosaccharide-virginiamycin shuttle program on the growth and performance of large white female turkeys. Poultry Sci 84:1967–1973

    Article  CAS  Google Scholar 

  • Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250

    Article  CAS  PubMed  Google Scholar 

  • Rachidi N, Martinez MJ, Barre P, Blondin B (2000) Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 35:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Ram AFJ, Kapteyn JC, Montijn RC, Caro LH, Douwes JE, Baginsky W, Mazur P, van den Ende H, Klis FM (1998) Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424

    Google Scholar 

  • Rank GH, Robertson AJ (1983) Protein and lipid composition of the yeast plasma membrane. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics, fundamental and applied aspects. Springer, Berlin, pp 225–241

    Chapter  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2009) Effects of single and combined supplementation of Enterococcus faecalis, mannan oligosaccharide and polyhydroxybutyrate acid on growth performance and immune status of rainbow trout, Oncorhynchus mykiss. Agric Int 15:607–617

    Google Scholar 

  • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Pena JM, Rodriguez C, Alvarez ARodriguez-Peña JM, Rodriguez C, Alvarez A, Nombela C, Arroyo J (2002) Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115:2549–2558

    CAS  PubMed  Google Scholar 

  • Russell I, Stewart GG (1979) Spheroplast fusion of brewer’s yeast strains. J Inst Brew 85:95–98

    Article  Google Scholar 

  • Russell I, Garrison IF, Stewart GG (1973) Studies in the formation of spheroplasts from stationary phase cells of Saccharomyces cerevisiae. J Inst Brew 79:48–54

    Article  CAS  Google Scholar 

  • Schreuder MP, Brekelmans S, Van den Ende H, Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9:399–409

    Article  CAS  PubMed  Google Scholar 

  • Sedmak, JJ (2006) Production of β-glucans and mannans. US Patent Application US 2006/0263415 A1

    Google Scholar 

  • Shimoi H, Iimura Y, Obata T (1995) Molecular cloning of CWP1: a gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabidus protease I. J Biochem 118:302–311

    Article  CAS  PubMed  Google Scholar 

  • Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    Article  CAS  PubMed  Google Scholar 

  • Smits GJ, Schenkman LR, Brul S, Pringle JR, Klis FM. (2006) Role of cell-cycle regulated expression in the localized incorporation of cell-wall proteins in yeast. Mol Biol Cell 17:3267–3280

    Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GG, Marshall DL, Speers A (2016) Brewing fundamentals – fermentation. Tech Quart Master Brew Assoc Am 53:2–22

    Google Scholar 

  • Stoupis T, Stewart GG, Stafford RA (2002) Mechanical agitation and rheological considerations of ale yeast slurry. J Am Soc Brew Chem 60:58–62

    CAS  Google Scholar 

  • Svoboda A (1966) Regeneration of yeast protoplasts in agar gels. Exp Cell Res 64:640–642

    Article  Google Scholar 

  • Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280:437–447

    Article  CAS  PubMed  Google Scholar 

  • Ter Linde JJM, Steensma HY (2003) Transcriptional regulation of YML083c under aerobic and anaerobic conditions. Yeast 20:439–454

    Article  CAS  PubMed  Google Scholar 

  • Ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181:7409–7413

    PubMed  PubMed Central  Google Scholar 

  • Terre M, Calvo MA, Adelantado C, Kocher A, Bacha A (2007) Effects of mannan oligosaccharides on performance and microorganism fecal counts of calves following an enhanced-growth feeding program. Anim Feed Sci Technol 137:115–125

    Article  CAS  Google Scholar 

  • Van Berkel MAA, Caro LHP, Montijn RC, Klis FM (1994) Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett 349:135–138

    Article  PubMed  Google Scholar 

  • Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis. Microbiol Rev 59:304–322

    PubMed  PubMed Central  Google Scholar 

  • Van Solingen P, van der Plaat JB (1977) Fusion of yeast protoplasts. J Bacteriol 130:946–947

    PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidgren V, Londesborough J (2011) Yeast flocculation and sedimentation in brewing. J Inst Brew 117:475–487

    Article  CAS  Google Scholar 

  • Vink E, Rodriguez-Suarez RJ, Gerard-Vincent M, Ribas JC, de Nobel H, van den Ende H, Durán A, Klis FM, Bussey H (2004) An in vitro assay for (1–6)-β-D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Vu TK, Lee VV (2008) Biochemical studies on the immobilization of the enzyme invertase (EC.3.2.1.26) in alginate gel and its kinetics. Asean Food J 15:73–78

    Google Scholar 

  • Weig M, Jansch L, Gross U, De Koster CG, Klis FM, De Groot PW (2004) Systematic identification in silico of covalently bound cell wall proteins and analysis of protein polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150:3129–3144

    Google Scholar 

  • White LA, Newman MC, Cromwell GL, Lindemann MD (2002) Brewer’s dried yeast as a source of mannan oligosaccharides for weanling pigs. J Anim Sci 80:2619–2628

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowicz D, CF L, Kurjan J, Lipke PN (1993) Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 13:2554–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman E, Way DF (1983) Purification and properties of the β-fructofuranosidase from Kluyveromyces fragilis. FEBS Lett 160:16e 20

    Article  Google Scholar 

  • Yin QY, de Groot PWJ, Dekker HL, de Jong L, Klis FM, de Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–20901

    Google Scholar 

  • Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). The Structure and Function of the Yeast Cell Wall, Plasma Membrane and Periplasm. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_5

Download citation

Publish with us

Policies and ethics