Skip to main content

Yeast Genetic Manipulation

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

  • 3308 Accesses

Abstract

The importance of the molecular biology of S. cerevisiae is closely related species is well documented. This yeast was the first microorganism to be domesticated for the production of fermented food and beverages and to be described as a living biochemical agent for biological transformations. In 1996, the complete genome of S. cerevisiae haploid strain became the first eukaryote genome to be fully sequenced. Its 16 chromosomes encode approximately 6000 genes, and approximately 5000 of them are individually non-essential to the yeast cell. This publicly available genome sequence has prepared the way to build the first systematic collection of deletion mutants, which enables high-throughput functional genetic experiments. In 2014, S. cerevisiae became the first eukaryote to be equipped with a functional chromosome. S. cerevisiae has three basic mating types – a, α and a/α. Most laboratory strains are haploid or diploid, whereas industrial yeast strains (brewing, distilling, baking and wine) are predominantly diploid, aneuploid and polyploidy. Polyploid strains are genetically more stable and less susceptible to mutational forces than either haploid or diploid strains, thus enabling such strains to be used by brewers with a high degree of confidence. Cells of polyploid (aneuploid) brewing strains – ale and lager – sporulate poorly, and asci containing four spores rarely develop. Moreover, spore viabilities are low, and the spores that are viable often lack the ability to mate. As a consequence, alternative methods of genetic manipulation such as protoplast (spheroplast) fusion and rare mating that introduces foreign genetic material into the genome have been required to facilitate strain improvement. Unlike the other techniques discussed, genetic engineering (recombinant DNA-rDNA) affords the possibility of introducing additional factors. Also, genetic engineering methods permit the transfer of genetic information between completely unrelated organisms. Consequently, the recipient organism becomes able to produce heterologous proteins or peptides that are not produced by their mated constituents. This provides considerable scope for the transfer of new constituents into industrial yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. PNAS 102:12678–12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JE, Martin PA (1975) The sporulation and mating of brewing yeasts. J Inst Brew 81:242–247

    Article  Google Scholar 

  • Andrews J, Gilliland RB (1952) Super-attenuation of beer: a study of three organisms capable of causing abnormal attenuations. J Inst Brew 58:189–196

    Article  CAS  Google Scholar 

  • Anné J, Peberdy JF (1976) Induced fusion of fungal protoplasts following treatment with polyethylene glycol. J Gen Microbiol 92:413–417

    Article  PubMed  Google Scholar 

  • Annibali N (2011) Process for obtaining aspart insulin using a Pichia pastoris yeast strain. Patent No. US20110117600A1

    Google Scholar 

  • Bae SJ, Kim S, Hahn JS (2016) Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci Rep 6:27667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamforth CW (2016) Brewing materials and processes. Elsevier, Boston, pp 151–156

    Book  Google Scholar 

  • Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J (2012) Hi-C: comprehensive technique to capture the conformation of genomes. Methods 58:268–276

    Article  CAS  PubMed  Google Scholar 

  • Bilinski CA, Russell I, Stewart GG (1986) Analysis of sporulation in brewer’s yeast: induction of tetrad formation. J Inst Brew 92:594–598

    Article  CAS  Google Scholar 

  • Bilinski CA, Russell I, Stewart GG (1987) Physiological requirements for induction of sporulation in lager yeast. J Inst Brew 93:21

    Article  Google Scholar 

  • Brueggemann M, Zou X (2004) Spheroplast fusion. Patent No. WO2004101802 A2

    Google Scholar 

  • Bussey H (1991) K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5:2339–2343

    Article  CAS  PubMed  Google Scholar 

  • Buzdar MA, Chi Z, Wang Q, Hua MX, Chi ZM (2011) Production, purification, and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathogenic yeast in crab. Appl Microbiol Biotechnol 91:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Liu GM, Zhao SF, Li J, Peng Y (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86:1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Chlup PH, Stewart GG (2011) Centrifuges in brewing. MBAA Tech Q 48:46–50

    CAS  Google Scholar 

  • Class III Ministry of Agriculture, Fisheries and Food and Intervention Board 1993 to 1994 – executive agency: supply estimates https://www.google.co.uk/#q=Ministry+of+agriculture+1993

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde J, Fink GR (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A 73:3651–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crandall MA, Egel R, Mackay VL (1977) Physiology of mating in three yeasts. Adv Microb Physiol 15:307–398

    Article  CAS  PubMed  Google Scholar 

  • Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T (2009) Expression in the yeast Pichia pastoris. Methods Enzymol 463:169–189

    Article  CAS  PubMed  Google Scholar 

  • Crumplen RM, D’Amore T, Russell I, Stewart GG (1990) The use of spheroplast fusion to improve yeast osmotolerance. J Am Soc Brew Chem 48:58–61

    CAS  Google Scholar 

  • Curran BPG, Bugeja VC (1996) Protoplast fusion in Saccharomyces cerevisiae. Yeast Protoc Methods Cell Mol Biol 53:45–49

    CAS  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recogn 18:119–138

    Article  CAS  Google Scholar 

  • Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi B, Slonimski PP (1955) Subcellular units involved in the synthesis of respiratory enzymes in yeast. Nature 176(4495):1207–1208

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi B, Jakob H, Grandchamp S (1966) Etudes sur la suppressivite des mutants a deficience respiratoire de la levure. 11. Etapesde la mutation grande en petite provoquee par le facteur suppressif. Genetics 54:1–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernandes JR, D’Amore T, Russell I, Stewart GG (1993a) Regulation of glucose and maltose transport in strains of Saccharomyces. J lndust Microbiol 9:127–130

    Article  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993b) Effect of yeast adaptation to maltose utilization on sugar uptake during the fermentation of brewer's wort. J Inst Brew 99:67–71

    Article  CAS  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993c) Respiratory deficiency in brewing yeast strains – effects on fermentation, flocculation, and beer flavor components. J Am Soc Brew Chem 51:16–20

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36:151–161

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1981a) Fermentation studies using Saccharomyces diastaticus yeast strains. Dev Ind Microbiol 22:577–586

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1981b) Genetic and biochemical studies on glucoamylase from Saccharomyces diastaticus. In: Stewart G, Russell I (eds) Advances in biotechnology. Pergamon Press, Toronto, pp 177–183

    Google Scholar 

  • Esposito RE, Klapholz S (1981) Meiosis and ascospore development. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 211–287

    Google Scholar 

  • Ferenczy L, Kevei F, Szegedi M, Franko A, Rojik I (1976) Factors affecting high frequency fungal protoplast fusion. Experientia 32:1156–1158

    Article  CAS  Google Scholar 

  • Fink GR, Styles CA (1972) Curing of a killer factor in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 69:2846–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson B, Liti G (2015) Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 32:17–27

    CAS  PubMed  Google Scholar 

  • Gibson B, Geertman JMA, Hittinger CT, Krogerus K, Libkind D, Louis EJ, Magalhães F, Sampaio JP (2017) New yeasts – new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res 17:216–230

    Google Scholar 

  • Gietz RD, Woods RA (2001) Genetic transformation of yeast. Bio Techniques 30:816–831

    CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  • Gilliland RB (1951) The flocculation characteristics of brewing yeasts during fermentation. In: Proceedings of the European Brewery Convention Congress, Brighton, pp 35–58

    Google Scholar 

  • Gilliland RB (1966) Saccharomyces diastaticus – a starch fermenting yeast. Wellerstein Lab Commun 17:165–176

    Google Scholar 

  • Gjermansen C, Sigsgaard P (1981) Construction of a hybrid brewing strain of Saccharomyces carlsbergensis by mating of meiotic segregants. Carlsb Res Commun 46:1–11

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546, 563–7

  • Gunge N, Nakatomi Y (1972) Genetic mechanisms of rare matings of the yeast Saccharomyces cerevisiae heterozygous for mating type. Genetics 70:41–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–415

    Article  CAS  PubMed  Google Scholar 

  • Hammond JRM (1996) Yeast genetics. In: Priest FG, Campbell I (eds) Brewing microbiology. Chapman and Hall, London, pp 45–82

    Google Scholar 

  • Hammond J (2012) Brewing with genetically modified amylolytic yeast, Chap 7. In: Harlander S, Roller S (eds) Genetic modification in the food industry: a strategy for food quality improvement. Springer Science & Business Media, pp 129–157

    Google Scholar 

  • Hammond JRM, Eckersley KW (1984) Fermentation properties of brewing yeast with killer character. J Inst Brew 90:167–177

    Article  CAS  Google Scholar 

  • Hayama Y, Fukuda Y, Kawai S, Hashimoto W, Murata K (2002) Extremely simple, rapid and highly efficient method for the yeast Saccharomyces cerevisiae using glutathione and early lag phase cells. J Biosci Bioeng 94:166–171

    Article  CAS  PubMed  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Jaros D, Rohm H (2011) Recent advances in milk clotting enzymes. Int J Dairy Technol 64:14–33

    Article  CAS  Google Scholar 

  • Johnston JR (1965) Breeding yeasts for brewing. I. Isolation of breeding strains. J Inst Brew 71:130–135

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367

    Article  CAS  PubMed  Google Scholar 

  • Karas BJ, Jablanovic J, Sun L, Ma L, Goldgof JM, Stam J, Ramon A, Manary MJ, Winzeler EA, Venter JC, Weyman PD, Gibson DG, Glass JI, Hutchison CA III, Smith HO, Suzuki Y (2013) Direct transfer of whole genomes from bacteria to yeast. Nat Methods 10:410–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas BJ, Jablanovic J, Irvine E, Sun L, Ma L, Weyman PD, Gibson DG, Glass JI, Venter JC, Hutchison CA III, Smith HO, Suzuki Y (2014) Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 9:743–750

    Article  CAS  PubMed  Google Scholar 

  • Kavšček M, Stražar M, Curk T, Natter K, Petrovič U (2015) Yeast as a cell factory: current state and perspectives. Microb Cell Factor 94:201514

    Google Scholar 

  • Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae from other fungi: methods and possible underlying mechanisms. Bioeng Bugs 1:395–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Kielland-Brandt MC, Nilsson-Tillgren T, Holmberg S, Petersen JGL, Svenningsen BA (1979) Transformation of yeast without the use of foreign DNA. Carlsb Res Commun 44:77–87

    Article  CAS  Google Scholar 

  • Kim IK, Roldão A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12:228–248

    Article  CAS  PubMed  Google Scholar 

  • Krogerus K, Gibson BR (2013) Influence of valine and other amino acids on total diacetyl and 2,3-pentanedione levels during fermentation of brewer’s wort. Appl Microbiol Biotechnol 97:6919–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7:e 00863-16

    Article  Google Scholar 

  • Li C, Li J, Wang G, Li X (2016) Heterologous biosynthesis of artemisinic acid in Saccharomyces cerevisiae. J Appl Microbiol 120:1466–1478

    Article  CAS  PubMed  Google Scholar 

  • Liu GL, Zhe C, Wang GY, Wang ZP, Li Y, Chi ZM (2015) Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol 35:222–234

    Article  CAS  PubMed  Google Scholar 

  • Magliani W, Conti S, Travassos LR, Polonelli L (2008) From yeast killer toxins to antibiobodies and beyond. FEMS Microbiol Lett 288:1–8

    Article  CAS  PubMed  Google Scholar 

  • Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchénio T, Lozano G, Harel-Bellan A (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore pathways. In: Vogt PK (ed) Proceedings of the National Academy of Sciences of the USA. The Scripps Research Institute, La Jolla, CA, p 53

    Google Scholar 

  • Meaden PG (1996) Yeast genome now completely sequenced. Ferment 9:213–214

    Google Scholar 

  • Meilgaard MC (1975a) Aroma volatiles in beer: purification, flavour, threshold and interaction. In: Drawert F (ed) Geruch und Geschmacksstoffe. Verlag Hans Carl, Nurnberg, pp 211–254

    Google Scholar 

  • Meilgaard MC (1975b) Flavor chemistry of beer. Part I. Flavor interaction between principal volatiles. MBAA Tech Q 12:107–117

    CAS  Google Scholar 

  • Molzahn SW (1977) A new approach to the application of genetics to brewing yeast. J Am Soc Brew Chem 35:54–59

    CAS  Google Scholar 

  • Mullis KB, Erlich HA, Arnheim N, Horn GT, Saiki RK, Scharf SJ (1987) Process for amplifying, detecting, and/or cloning nucleic acid sequences. Patent No. US4683195 A

    Google Scholar 

  • Nakagawe A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390–10396

    Article  CAS  Google Scholar 

  • Naumov GI, Li C-F (2011) Species specificity of the action of Zygowilliopsis californica killer toxins on Saccharomyces yeasts: investigation of the Taiwanese populations. Mikol Fitopatol 45:332–336

    Google Scholar 

  • Naumov GI, Kondratieva VI, Naumova ES, Chen G-Y, Li C-F (2011) Polymorphism and species specificity of killer activity formation in the yeast Zygowilliopsis californica. Biotekhnologiya 3:29–33

    Google Scholar 

  • Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G (2007) Engineering promoter regulation. Biotechnol Bioeng 96:550–558

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2013) Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4:207–211

    Article  PubMed  Google Scholar 

  • Nielsen J (2015) Yeast cell factories on the horizon. Science 349(6252):1050–1051

    Article  CAS  PubMed  Google Scholar 

  • Oliver SG (1996a) From DNA sequence to biological function. Nature 379:597–600

    Article  CAS  PubMed  Google Scholar 

  • Oliver SG (1996b) A network approach to the systematic analysis of yeast gene function. Trends Genet 12:241–242

    Article  CAS  PubMed  Google Scholar 

  • Peberdy JF, Eyssen H, Anné J (1977) Interspecific hybridisation between Penicillium chrysogenum and Pencillium cyaneo-fulvum following protoplast fusion. Mol Gen Genet 157:281–284

    Article  Google Scholar 

  • Peris D, Sylvester K, Libkind D, Gonçalves P, Sampaio JP, Alexander WG, Hittinger CT (2014) Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol Ecol 23:2031–2045

    Article  PubMed  Google Scholar 

  • Petranovic D, Tyo K, Vemuri GN, Nielsen J (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Pomper S, Burkholder PR (1949) Studies on the biochemical genetics of yeast. Proc Natl Acad Sci U S A 35:456–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontecorvo G, Kafer E (1958) Genetic analysis based on mitotic recombination. Adv Genet 9:71–104

    CAS  PubMed  Google Scholar 

  • Pray LA (2008) Discovery of DNA structure and function: Watson and Crick. Nat Educ 1:100

    Google Scholar 

  • Pretorius IS (2016) Synthetic genome engineering forging new frontiers for wine yeast. Crit Rev Biotechnol 37:112–136

    Article  PubMed  CAS  Google Scholar 

  • Pretorius IS, du Toit MD, van Rensburg P (2003) Designer yeasts for the fermentation industry of the 21st century. Food Technol Biotechnol 41:3–10

    CAS  Google Scholar 

  • Reinhardt K, Dowling DK, Morrow EH (2013) Medicine. Mitochondrial replacement, evolution, and the clinic. Science 341:1345–1346

    Article  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  • Russell I, Stewart GG (1979) Spheroplast fusion of brewer’s yeast strains. J Inst Brew 85:95–98

    Article  Google Scholar 

  • Russell I, Stewart GG (1980) Transformation of maltotriose uptake ability into a haploid strain of Saccharomyces spp. J Inst Brew 86:55–59

    Article  CAS  Google Scholar 

  • Russell I, Stewart GG (1981) Liquid nitrogen storage of yeast cultures compared to more traditional storage methods. J Am Soc Brew Chem 39:19–24

    Google Scholar 

  • Russell I, Stewart GG (1985) Valuable techniques in the genetic manipulation of industrial yeast strains. J Am Soc Brew Chem 43:84–90

    CAS  Google Scholar 

  • Russell I, Stewart GG (2014) Whisky: technology, production and marketing. Academic (Elsevier), Boston, MA

    Google Scholar 

  • Saerens SM, Duong CT, Nevoigt E (2010) Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 86:1195–1212

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breining F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1998) An introduction to the genetics and molecular biology of the yeast Saccharomyces cerevisiae. http://dbburmcrochester.edu/labs/sherman_f/yeast/

  • Sherman F, Hicks J (1991) Micromanipulation and dissection of asci. Methods Enzymol 194:21–37

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11:243–252

    Article  CAS  PubMed  Google Scholar 

  • Silhankova L, Mostek J, Savel J, Solinova H (1970) Respiratory deficient mutants of bottom brewer’s yeast II technological properties of some RD mutants. J Inst Brew 76:289–295

    Article  CAS  Google Scholar 

  • Sipiczki M, Ferenczy L (1977a) Protoplast fusion of Schizosaccharomyces pombe auxotrophic mutants of identical mating-type. Mol Gen Genet 151:7781

    Article  Google Scholar 

  • Sipiczki M, Ferenczy L (1977b) Fusion of Rhodosporidiuin (Rhodotorula) protoplasts. FEMS Microbiol Lett 2:203–205

    Article  Google Scholar 

  • Sipiczki M, Heyer WD, Kohli J (1985) Preparation and regeneration of protoplasts and spheroplasts for fusion and transformation of Schizosaccharomyces pombe. Curr Microbiol 12:169

    Article  Google Scholar 

  • Skatrud PL, Jaeck DM, Kot EJ, Helbert JR (1980) Fusion of Saccharomyces uvarum with Saccharomyces cerevisiae: genetic manipulation and reconstruction of a brewers yeast. J Am Soc Brew Chem 38:49–53

    Google Scholar 

  • Soares EV (2010) Flocculation in Saccharomyces: a review. J Appl Microbiol 110:1–18

    Article  PubMed  CAS  Google Scholar 

  • Speers A (2016) Brewing fundamentals. Part 3: Yeast settling—flocculation. MBAA Tech Q 53:17–22

    Google Scholar 

  • Spencer JFT, Spencer DM (1977) Hybridization of non-sporulating and weakly sporulating strains of brewer’s yeasts. J Inst Brew 83:287–289

    Article  Google Scholar 

  • Spencer JF, Spencer DM (1996) Rare-mating and cytoduction in Saccharomyces cerevisiae. Methods Mol Biol 53:39–44

    CAS  PubMed  Google Scholar 

  • Spencer JFT, Laud P, Spencer DM (1980) The use of mitochondrial mutant sin the isolation of hybrids involving industrial yeast strains. Mol Gen Genet 178:651–654

    Article  Google Scholar 

  • Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    Article  CAS  PubMed  Google Scholar 

  • Stewart GG (1973) Recent developments in the characterization of brewery yeast strains. MBAA Tech Q 9:183–191

    Google Scholar 

  • Stewart GG (1975) Yeast flocculation – practical implications and experimental findings. Brew Dig 50:42–62

    CAS  Google Scholar 

  • Stewart GG (1981) The genetic manipulation of industrial yeast strains. Can J Microbiol 27:973–990 (Canadian Society for Microbiology, Hotpack Award Lecture)

    Article  CAS  Google Scholar 

  • Stewart GG (2002) Yeast: the most important microorganism in use. Food Essent 1:2–4

    Google Scholar 

  • Stewart GG (2009) The IBD Horace Brown Medal Lecture – forty years of brewing research. J Inst Brew 115:3–29

    Article  CAS  Google Scholar 

  • Stewart GG (2010) MBAA Award of Merit Lecture. A love affair with yeast. MBAA Tech Q 47:4–11

    Google Scholar 

  • Stewart GG (2014a) Yeast mitochondria – their influence on brewer’s yeast fermentation and medical research. MBAA Tech Q 51:3–11

    Google Scholar 

  • Stewart GG (2014b) Brewing intensification. The American Society for Brewing Chemists, St. Paul, MN

    Google Scholar 

  • Stewart GG (2014c) The concept of nature – nurture applied to brewer’s yeast and wort fermentations. MBAA, Tech Q 51:69–80

    Google Scholar 

  • Stewart GG, Russell I (1977) The identification, characterization, and mapping of a gene for flocculation in Saccharomyces sp. Can J Microbiol 23:441–447

    Article  CAS  PubMed  Google Scholar 

  • Stewart GG, Russell I (1979) Current use of the “new” genetics in research and development of brewer’s yeast strains. In: Proceedings of the 17th European Brewery Convention Congress, Berlin (West) EBC/DSW, Dordrecht, pp 475–490

    Google Scholar 

  • Stewart GG, Russell I (2009) An introduction to brewing science and technology, Series lll, Brewer’s yeast, 2nd edn. The Institute of Brewing and Distilling, London. isbn:0900498-13-8

    Google Scholar 

  • Stewart GG, Panchal CJ, Russell I (1983) Current developments in the genetic manipulation of brewing yeast strains – a review. J Inst Brew 89:170–188

    Article  CAS  Google Scholar 

  • Stewart GG, Jones RM, Russell I (1985) The use of derepressed yeast mutants in the fermentation of brewery wort. In: Proceedings of the 20th European Brewery Convention Congress, Helsinki. IRL Press, Oxford, pp 243–250

    Google Scholar 

  • Stewart GG, Russell I, Panchal CJ (1986) Genetically stable allopolyploid somatic fusion product useful in the production of fuel alcohols. Canadian Patent 1,199,593

    Google Scholar 

  • Stewart GG, Jones RM, Russell I (2013) 125th anniversary review – developments in brewing and distilling yeast strains. J Inst Brew 119:202–220

    Article  CAS  Google Scholar 

  • Stewart GG, Maskell DL, Speers A (2016) Brewing fundamentals – fermentation. MBAA Tech Q 53:2–22

    Google Scholar 

  • Stovicek V, Holkenbrink C, Borodina I (2017) CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 17:1–16

    Article  Google Scholar 

  • Svoboda A (1978) Fusion of yeast protoplasts induced by polyethylene glycol. J Gen Microbiol 109:169–175

    Article  Google Scholar 

  • Swinnen S, Thevelein JM, Nevoigt E (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12:215–227

    Article  CAS  PubMed  Google Scholar 

  • Tamaki H (1978) Genetic studies of the ability to ferment starch in Saccharomyces: gene polymorphism. Mol Gen Genet 164:205–209

    Article  Google Scholar 

  • Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 7(2):e31235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teunissen AWRH, Steensma HY (1995) Review: The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Thorne RSW (1951) Some aspects of yeast flocculence. In: Proceedings of the European Brewery Convention Congress, Brighton, pp 21–30

    Google Scholar 

  • Tyo KE, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Mulders SE, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  PubMed  CAS  Google Scholar 

  • van Solingen P, van der Plaat JB (1977) Fusion of yeast spheroplasts. J Bacteriol 130:946–947

    PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    CAS  Google Scholar 

  • Walsh G (2010) Biopharmaceutical benchmarks. Nat Biotechnol 28:917–924

    Article  CAS  PubMed  Google Scholar 

  • Walters VL (2001) Conjugation between bacterial and mammalian cells. Nat Genet 29:375–376

    Article  CAS  Google Scholar 

  • Wang L, Yue L, Chi ZM, Wang X (2008) Marine killer yeasts active against a yeast strain pathogenic to crab Portunus trituberculatus. Dis Aquat Org 80:211–218

    Article  CAS  PubMed  Google Scholar 

  • Wang XX, Chi ZM, Peng Y (2012) Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91-2. Microbiol Res 167:558–563

    Article  CAS  PubMed  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Murakami J, Shohei K (1991) Breeding of flocculent industrial Saccharomyces cerevisiae strains by introducing the flocculation gene FLO1. Agric Biol Chem 55:1547–1552

    CAS  Google Scholar 

  • Watson JD, Crick FHC (1953a) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953b) Genetical implications of the structure of Deoxyribonucleic Acid. Nature 171:964–967

    Article  CAS  PubMed  Google Scholar 

  • Wickner RB, Edskes HK (2015) Yeast killer elements hold their hosts hostage. PLoS Genet 11:e1005139

    Article  PubMed  PubMed Central  Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    Article  CAS  PubMed  Google Scholar 

  • Winzeler E, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Woods DR, Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51:15–126

    Article  Google Scholar 

  • Zimmermann RE, Stokell DJ (2010) Insulin production methods and pro-insulin constructs. US Patent No. 7790677 B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Yeast Genetic Manipulation. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_16

Download citation

Publish with us

Policies and ethics