Advertisement

Biofuels from Microalgae: Biodiesel

  • Lucas Reijnders
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

It has been argued that the energy output from microalgal biofuel production should at least be 5–8 times the energy input, apart from solar irradiation driving algal photosynthesis. There is as yet no commercial production of microalgal biodiesel or large-scale demonstration project to check whether this criterion regarding the energy balance can be met in actual practice. There is, however, a set of relatively well-documented peer-reviewed scientific papers estimating energy inputs and outputs of future autotrophic microalgal biodiesel production. Energy balances for biodiesel from autotrophic microalgae grown in ponds tend to be better than for biodiesel from such microalgae grown in bioreactors. The studies regarding energy balances for biodiesel derived from microalgae grown in open ponds are considered here. None of these energy balances meets the criterion that the energy output should exceed the energy input by a factor 5–8. Estimated energy balances are variable due to divergent assumptions about microalgal varieties, applied algal and biodiesel production technologies, assumed parameters and yields and due to differences in system boundaries, allocation, and the use of credits. The studies considered here could have done better in handling uncertainties in estimated energy balances.

Keywords

Biodiesel Energy balance Variability Uncertainties 

References

  1. Adesanya, V., Cadena, E., Scott, S. A., & Smith, A. G. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.CrossRefGoogle Scholar
  2. Adhikari, B., & Pellegrino, J. (2015). Life cycle assessment of five microalgae-to-biofuels processes of varying complexity. Journal of Renewable and Sustainable Energy, 7, 043136 (12 pp).CrossRefGoogle Scholar
  3. Batan, L., Quinn, J., Wilson, B., & Bradley, T. (2010). Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environmental Science and Technology, 44, 7975–7980.CrossRefGoogle Scholar
  4. Benemann, J. R. (2013). Microalgae for biofuels and animal feeds. Biotechnology Bioengineering, 110, 2319–2320.Google Scholar
  5. Brentner, L. B., Eckelman, M. J., & Zimmerman, J. B. (2011). Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental Science and Technology, 45, 7060–7067.CrossRefGoogle Scholar
  6. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 10, 360–369.CrossRefGoogle Scholar
  7. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value perspectives. Bioresource Technology, 229, 53–62.CrossRefGoogle Scholar
  8. Chisti, Y. (2013a). Constraints to commercialization of algal biofuels. Journal of Biotechnology, 167, 201–214.CrossRefGoogle Scholar
  9. Chisti, Y. (2013b). The problem with algal fuels. Biotechnology Bioengineering, 110, 2319–2328.Google Scholar
  10. Chisti, Y. (2016). Large scale production of algal biomass: Raceway ponds. In F. Bux, & Y. Chisti (Eds.) Algal Biotechnology (pp. 21–40). Switzerland: Springer.CrossRefGoogle Scholar
  11. Chowdhury, R., & Franchetti, M. (2017). Life cycle energy demand from nutrients present in dairy waste. Sustainable Production and Consumption, 8, 22–27.CrossRefGoogle Scholar
  12. Clarens, A. F., Nassau, H., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2011). Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environmental Science and Technology, 45, 7554–7560.CrossRefGoogle Scholar
  13. Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 1813–1819.CrossRefGoogle Scholar
  14. Colotta, M., Busi, L., Champagne, P., Mabee, W., Tomasoni, G., & Alberti, M. (2016a). Evaluating microalgae-to-energy systems: Different approaches to life cycle assessment (LCA) studies. Biofuels Bioproduction and Biorefining http://doi.org/10.1002/bbb.1713.
  15. Colotta, M., Champagne, P., Mabee, W., Tomasoni, G., Alberti, M., Busi, L., et al. (2016b). Environmental assessment of co-location alternatives for a microalgae cultivation plant: A case study of Kingston (Canada). Energy Procedia, 95, 29–36.CrossRefGoogle Scholar
  16. Dutta, S., Neto, F., & Coelho, M. (2016). Microalgae biofuels: A comparative study on techno-economic analysis & life cycle assessment. Algal Research, 20, 44–52.CrossRefGoogle Scholar
  17. Frank, E. D., Han, J., Palu-Rivera, I. A., Elgowainy, A., & Wang, M. Q. (2012). Methane and nitrous oxide emissions affect the life cycle analysis of algal biofuels. Environmental Research Letter, 7, 014030.CrossRefGoogle Scholar
  18. Gregory, J. F., Noshadravan, A., Olivetti, E. A., & Kirchain, R. E. (2016). A methodology for robust comparative life cycle assessments incorporating uncertainty. Environmental Science and Technology, 50, 6397–6405.CrossRefGoogle Scholar
  19. Hallenbeck, P. C., Grogger, M., Mraz, M., & Veverka, D. (2016). Solar biofuels production with microalgae. Applied Energy, 179, 136–145.CrossRefGoogle Scholar
  20. Huijbregts, M. A. J., Giliamse, W., Ragas, A. M. J., & Reijnders, L. (2003). Evaluating uncertainty in environmental life cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environmental Science and Technology, 37, 2600–2608.CrossRefGoogle Scholar
  21. Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., et al. (2015). Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research, 10, 249–265.CrossRefGoogle Scholar
  22. Jez, S., Spinelli, D., Fierro, A., Dibenedetto, A., Aresta, M., Busi, E., et al. (2017). Comparative life cycle assessment study on environmental impact of oil production from microalgae and terrestrial oilseed crops. Bioresource Technology, 239, 266–275.CrossRefGoogle Scholar
  23. Kern, J. D., Hise, A. M., Characklis, G. W., Gerlach, R., Viamajala, S., & Gardner, R. (2017). Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresource Technology, 225, 418–428.CrossRefGoogle Scholar
  24. Khoo, H. H., Sharratt, P. N., Das, P., Balasubramanian, R. K., Naraharisetti, P. K., & Shaik, S. (2011). Life cycle energy and CO2 analysis of micro-algae-to-biodiesel: Preliminary results and comparisons. Bioresource Technology, 102, 5800–5807.CrossRefGoogle Scholar
  25. Koppelaar, R. H. E. M. (2017). Solar-PV energy payback and net energy: Meta assessment of study quality, reproducibility, and results harmonization. Renewable and Sustainable Energy Reviews, 72, 1241–1255.CrossRefGoogle Scholar
  26. Lardon, L. A., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life cycle assessment of biofuel production from microalgae. Environmental Science and Technology, 43, 6475–6481.CrossRefGoogle Scholar
  27. Laurens, L. M. L., Chen-Glasser, M., & McMillan, J. (2017). A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Research, 24, 261–264.CrossRefGoogle Scholar
  28. Luangpipat, T., Chisti Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae—Effects of salinity and other factors. Journal of Biotechnology. http://doi.org/10.1016/j.jbiotec.2016.11.029.
  29. Maranduba, H. L., Robra, S., Nascimento, I. A., da Cruz, R. S., Rodrigues, L. B., & de Almeida Neto, J. A. (2016). Improving the energy balance of microalgal biodiesel: Synergy with an autonomous sugarcane ethanol distillery. Energy, 115, 888–895.CrossRefGoogle Scholar
  30. Monari, C., Righi, S., & Olsen, S. I. (2016). Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life cycle modeling. Journal of Cleaner Production, 112, 4064–4092.CrossRefGoogle Scholar
  31. Mu, D., Min, M., Krohn, B., Mullins, K. A., Ruan, R., & Hill, J. (2014). Life cycle environmental impacts of wastewater-based algal biofuels. Environmental Science and Technology, 48, 11696–11704.CrossRefGoogle Scholar
  32. Naraharisetti, P. K., Das, P., & Sharratt, P. N. (2017). Critical factors in energy generation from microalgae. Energy, 120, 139–152.CrossRefGoogle Scholar
  33. Orfield, N. D., Levine, R. B., Keoleian, G. A., Miller, S. A., & Savage, P. E. (2015). Growing algae for biodiesel on direct sunlight or sugars: A comparative life cycle assessment. ACS Sustainable Chemistry & Engineering, 3, 386–395.CrossRefGoogle Scholar
  34. Perez-Garcia, O., Puente, Y., & Bahan, M. E. (2011). Organic carbon supplementation of sterilized municipal waste water is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology, 47, 190–199.CrossRefGoogle Scholar
  35. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.CrossRefGoogle Scholar
  36. Quinn, J. C., Smith, T. G., Downes, C. M., & Quinn, C. (2014). Microalgae to biofuels life cycle assessment—Multiple pathway evaluation. Algal Research, 4, 116–122.CrossRefGoogle Scholar
  37. Rawat, I., Gupta, S. K., Shriwastav, A., Singh, P., & Bux, F. (2016). Microalgae applications in wastewater treatment. In F. Bux, Y. Chisti (Eds.) Algae Biotechnology (pp. 249–268). Switzerland: Springer.CrossRefGoogle Scholar
  38. Razon, L. F., & Tan, R. R. (2011). Net energy analysis of the production of biodiesel and biogas from the microalgae Haematococcus pluvialis and Nanochloropsis. Applied Energy, 88, 3507–3514.CrossRefGoogle Scholar
  39. Reijnders, L. (2013). Lipid-based biofuels from autotrophic microalgae: Energetic and environmental performance. WIRE’s Energy Environmental, 2, 73–85.CrossRefGoogle Scholar
  40. Reijnders, L. (2017a). Life cycle assessment of greenhouse gas emissions. Chapter 2–2. In W. -Y. Chen et al. (Eds.) Handbook of climate change mitigation and adaptation (pp. 63–91). Heidelberg: Springer (Part 1).Google Scholar
  41. Reijnders, L. (2017b). Greenhouse gas balances of microalgal biofuels. In J. C. M. Pires (Ed.) Microalgae as a source of bioenergy: Products, processes and economic. Bentham Science Publishers.Google Scholar
  42. Reijnders, L., & Huijbregts, M. A. J. (2009). Biofuels for road transport. Heildelberg: Springer.Google Scholar
  43. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2008). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnology Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  44. Rogers, J. N., Rosenberg, J. N., Guzman, B. J., Oh, V. H., Mimbela, L. E., Ghassemi, A., Betenbaugh, M. J., Oyler, G. A., Donohue, M. D. (2014). A critical analysis of paddlewheel driven raceway ponds for algal biofuel production at commercial scales. Algal Research, 4, 76–88.CrossRefGoogle Scholar
  45. Shirvani, T., Yan, X., Inderwildi, O. R., Edwards, P. P., & King, D. A. (2011). Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy & Environmental Science, 4, 3773–3778.CrossRefGoogle Scholar
  46. Sills, D. L., Paramita, V., Franke, M. J., Johnson, M. C., Akabas, T. M., Greene, C. H., et al. (2012). Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environmental Science and Technology, 47, 687–694.CrossRefGoogle Scholar
  47. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38.CrossRefGoogle Scholar
  48. Stephenson, A. L., Kazamis, E., Dennis, J. S., Howe, C. J., Satt, S. A., & Smith, A. G. (2010). Life cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air lift tubular bioreactors. Energy & Fuels, 24, 4062–4077.CrossRefGoogle Scholar
  49. Togarcheti, S. C., Mediboyina, M. K., Chauhan, V. S., Mukherji, S. M., & Mudliar, S. N. (2017). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resource, Conservation and Recycling, 122, 285–294.CrossRefGoogle Scholar
  50. Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329, 796–799.CrossRefGoogle Scholar
  51. Xu, L., Brilman, D. W. F., Withag, J. A. M., Brem, G., & Kersten, S. (2011). Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis. Bioresource Technology, 102, 5113–5122.CrossRefGoogle Scholar
  52. Yuan, J., Kendall, A., & Zhang, Y. (2015). Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. Global Change Biology Bioenergy, 7, 1245–1259.CrossRefGoogle Scholar
  53. Zhu, L., Nugroho, Y. K., Shakeel, S. R., Li, Z., Martinkauppi, B., & Hiltunen, E. (2017). Using microalgae to produce liquid transportation biodiesel: What is next? Renewable and Sustainable Energy Reviews, 78, 391–400.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations