Life Cycle Assessment of Biofuels from Microalgae

  • Mariany Costa Deprá
  • Eduardo Jacob-Lopes
  • Leila Queiroz Zepka
Part of the Green Energy and Technology book series (GREEN)


Recently, the use of mathematical tools, such as the life cycle assessment (LCA) methodology for ecologically sound processes, with the purpose of establishing a process designer involving the limits of “cradle to grave” in an efficient and flexible way with less subjectivity, has become an ambitious challenge to be won. Therefore, to generate biofuels with low atmospheric emissions and minimal energy requirements has become crucial to commercial competitiveness. Thus, the objective of this chapter is to approach the current situation of the different scenarios of microalgal biofuels production by an evaluation of them via a life cycle assessment. The chapter is based on three main topics: (1) fundamentals for structuring a life cycle assessment, (2) biofuels data set reported in the literature, and (3) application of LCA in microalgae biofuels.


Microalgal Biofuel Biodiesel Life cycle analysis 


  1. Adesanya, V. O., Cadena, E., Scott, S. A., & Smith, A. G. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.CrossRefGoogle Scholar
  2. Bicalho, T., Sauer, I., Rambaud, A., & Altukhova, Y. (2017). LCA data quality: A management science perspective. Journal of Cleaner Production, 156, 888–898.CrossRefGoogle Scholar
  3. Blanchard, R., Kumschick, S., & Richardson, D. M. (2017). Biofuel plants as potential invasive species: Environmental concerns and progress towards objective risk assessment. In Roadmap for sustainable biofuels in southern Africa (pp. 47–60). Nomos Verlagsgesellschaft mbH & Co. KG.CrossRefGoogle Scholar
  4. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRefGoogle Scholar
  5. Carneiro, M. L. N., Pradelle, F., Braga, S. L., Gomes, M. S. P., Martins, A. R. F., Turkovics, F., et al. (2017). Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews, 73, 632–653.CrossRefGoogle Scholar
  6. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81.CrossRefGoogle Scholar
  7. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.CrossRefGoogle Scholar
  8. Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science and Technology, 44(5), 1813–1819.CrossRefGoogle Scholar
  9. Collotta, M., Champagne, P., Mabee, W., Tomasoni, G., Leite, G. B., Busi, L., et al. (2017). Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP, 61, 756–760.CrossRefGoogle Scholar
  10. Curran, M. A. (2006). Life cycle assessment: Principles and practice. USA: Environmental Protection Agency (EPA). EPA/600/R-06/060. May 2006.Google Scholar
  11. Department of Energy & Climate Change. (2010). Guidelines to Defra/DECC’s GHG conversion factors for company reporting. Available at: Accessed July 2017.
  12. Deprá, M. C., Zepka, L. Q., & Jacob-Lopes, E. (2017). Life cycle assessment as a fundamental tool to define the biofuel performance. In Frontiers in bioenergy and biofuels. InTech. Scholar
  13. Dutta, S., Neto, F., & Coelho, M. C. (2016). Microalgae biofuels: A comparative study on techno-economic analysis & life-cycle assessment. Algal Research, 20, 44–52.CrossRefGoogle Scholar
  14. Farooq, W., Suh, W. I., Park, M. S., & Yang, J. W. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73–81.CrossRefGoogle Scholar
  15. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate change 2007. The physical science basis (Chapter 2).Google Scholar
  16. Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers & Chemical Engineering, 81, 153–170.CrossRefGoogle Scholar
  17. Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919–4930.CrossRefGoogle Scholar
  18. Guieysse, B., Béchet, Q., & Shilton, A. (2013). Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresource Technology, 128, 317–323.CrossRefGoogle Scholar
  19. Guo, M., & Murphy, R. J. (2012). LCA data quality: Sensitivity and uncertainty analysis. Science of the Total Environment, 435, 230–243.CrossRefGoogle Scholar
  20. Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564–573.CrossRefGoogle Scholar
  21. ILCD Handbook. (2010). General guide for life cycle assessment—Detailed guidance (1st ed.). Institute for Environment and Sustainability, Joint Research Centre, European Commission.Google Scholar
  22. ISO—International Standard 14040. (2006). Environmental management—Life cycle assessment. Principles and framework. Geneva: International Organisation for Standardisation (ISO).Google Scholar
  23. ISO—International Standard 14041. (1998). Environmental management—Life cycle assessment. Goal and scope definition and Inventory analysis. Geneva: International Organisation for Standardisation (ISO). Google Scholar
  24. ISO—International Standard 14042. (2000). Environmental management—Life cycle assessment. Life cycle impact assessment. Geneva: International Organisation for Standardisation (ISO).Google Scholar
  25. ISO—International Standard 14043. (2000). Environmental management—Life cycle assessment. Life cycle interpretation. Geneva: International Organisation for Standardisation (ISO).Google Scholar
  26. Jacob-Lopes, E., & Franco, T. T. (2010). Microalgae-based systems for carbon dioxide sequestration and industrial biorefineries. In Biomass. InTech.Google Scholar
  27. Jacquemin, L., Pontalier, P. Y., & Sablayrolles, C. (2012). Life cycle assessment (LCA) applied to the process industry: A review. The International Journal of Life Cycle Assessment, 17, 1–14.CrossRefGoogle Scholar
  28. Jian, H., Jing, Y., & Peidong, Z. (2015). Life cycle analysis on fossil energy ratio of algal biodiesel: Effects of nitrogen deficiency and oil extraction technology. The Scientific World Journal, 2015, 9.Google Scholar
  29. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., et al. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.CrossRefGoogle Scholar
  30. Jorquera, O., Kiperstok, A., Sales, E. A., Embirucu, M., & Ghirardi, M. L. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 101(4), 1406–1413.CrossRefGoogle Scholar
  31. Klein, B. C., Bonomi, A., & Maciel Filho, R. (2017). Integration of microalgae production with industrial biofuel facilities: A critical review. Renewable and Sustainable Energy Reviews, 82, 1376–1392.CrossRefGoogle Scholar
  32. Klöpffer, W. (2006). The role of SETAC in the development of LCA. The International Journal of Life Cycle Assessment, 11, 116–122.CrossRefGoogle Scholar
  33. Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75–86.CrossRefGoogle Scholar
  34. Laratte, B., Guillaume, B., Kim, J., & Birregah, B. (2014). Modeling cumulative effects in life cycle assessment: The case of fertilizer in wheat production contributing to the global warming potential. Science of the Total Environment, 481, 588–595.CrossRefGoogle Scholar
  35. Liu, X., Clarens, A. F., & Colosi, L. M. (2012). Algae biodiesel has potential despite inconclusive results to date. Bioresource Technology, 104, 803–806.CrossRefGoogle Scholar
  36. Luo, D., Hu, Z., Choi, D. G., Thomas, V. M., Realff, M. J., & Chance, R. R. (2010). Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Environmental Science and Technology, 44(22), 8670–8677.CrossRefGoogle Scholar
  37. Medeiros, D. L., Sales, E. A., & Kiperstok, A. (2015). Energy production from microalgae biomass: Carbon footprint and energy balance. Journal of Cleaner Production, 96, 493–500.CrossRefGoogle Scholar
  38. Mekonnen, M. M., & Hoekstra, A. Y. (2010). A global and high-resolution assessment of the green, blue and grey water footprint of wheat (Vol. 42, pp. 1–94). Delft, The Netherlands: Unesco-IHE Institute for Water Education.Google Scholar
  39. Monari, C., Righi, S., & Olsen, S. I. (2016). Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life-cycle modeling. Journal of Cleaner Production, 112, 4084–4092.CrossRefGoogle Scholar
  40. Prox, M., & Curran, M. A. (2017). Consequential life cycle assessment. In Goal and scope definition in life cycle assessment (pp. 145–160). Springer Netherlands.Google Scholar
  41. Quiroz-Arita, C., Sheehan, J. J., & Bradley, T. H. (2017). Life cycle net energy and greenhouse gas emissions of photosynthetic cyanobacterial biorefineries: Challenges for industrial production of biofuels. Algal Research (in press).CrossRefGoogle Scholar
  42. Silva, J. A. M., Santos, J. J. C. S., Carvalho, M., & de Oliveira, S. (2017). On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems. Energy, 127, 775–785.CrossRefGoogle Scholar
  43. Soccol, C. R., Faraco, V., Karp, S., Vandenberghe, L. P. S., Thomaz-Soccol, V., Woiciechowski, A., et al. (2011). Biofuels: Alternative feedstocks and conversion processes.Google Scholar
  44. Soh, L., Montazeri, M., Haznedaroglu, B. Z., Kelly, C., Peccia, J., Eckelman, M. J., et al. (2014). Evaluating microalgal integrated biorefinery schemes: Empirical controlled growth studies and life cycle assessment. Bioresource Technology, 151, 19–27.CrossRefGoogle Scholar
  45. Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., et al. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488.CrossRefGoogle Scholar
  46. Zhang, Y., Luo, X., Buis, J. J., & Sutherland, J. W. (2015). LCA-oriented semantic representation for the product life cycle. Journal of Cleaner Production, 86, 146–162.CrossRefGoogle Scholar
  47. Živković, S. B., Veljković, M. V., Banković-Ilić, I. B., Krstić, I. M., Konstantinović, S. S., Ilić, S. B., et al. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 79, 222–247.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mariany Costa Deprá
    • 1
  • Eduardo Jacob-Lopes
    • 1
  • Leila Queiroz Zepka
    • 1
  1. 1.Food Science and Technology DepartmentFederal University of Santa Maria, UFSMSanta MariaBrazil

Personalised recommendations