Skip to main content

Life Cycle Assessment of Biofuels from Microalgae

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Recently, the use of mathematical tools, such as the life cycle assessment (LCA) methodology for ecologically sound processes, with the purpose of establishing a process designer involving the limits of “cradle to grave” in an efficient and flexible way with less subjectivity, has become an ambitious challenge to be won. Therefore, to generate biofuels with low atmospheric emissions and minimal energy requirements has become crucial to commercial competitiveness. Thus, the objective of this chapter is to approach the current situation of the different scenarios of microalgal biofuels production by an evaluation of them via a life cycle assessment. The chapter is based on three main topics: (1) fundamentals for structuring a life cycle assessment, (2) biofuels data set reported in the literature, and (3) application of LCA in microalgae biofuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesanya, V. O., Cadena, E., Scott, S. A., & Smith, A. G. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.

    Article  Google Scholar 

  • Bicalho, T., Sauer, I., Rambaud, A., & Altukhova, Y. (2017). LCA data quality: A management science perspective. Journal of Cleaner Production, 156, 888–898.

    Article  Google Scholar 

  • Blanchard, R., Kumschick, S., & Richardson, D. M. (2017). Biofuel plants as potential invasive species: Environmental concerns and progress towards objective risk assessment. In Roadmap for sustainable biofuels in southern Africa (pp. 47–60). Nomos Verlagsgesellschaft mbH & Co. KG.

    Chapter  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  Google Scholar 

  • Carneiro, M. L. N., Pradelle, F., Braga, S. L., Gomes, M. S. P., Martins, A. R. F., Turkovics, F., et al. (2017). Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews, 73, 632–653.

    Article  Google Scholar 

  • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81.

    Article  Google Scholar 

  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.

    Article  Google Scholar 

  • Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science and Technology, 44(5), 1813–1819.

    Article  Google Scholar 

  • Collotta, M., Champagne, P., Mabee, W., Tomasoni, G., Leite, G. B., Busi, L., et al. (2017). Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP, 61, 756–760.

    Article  Google Scholar 

  • Curran, M. A. (2006). Life cycle assessment: Principles and practice. USA: Environmental Protection Agency (EPA). EPA/600/R-06/060. May 2006.

    Google Scholar 

  • Department of Energy & Climate Change. (2010). Guidelines to Defra/DECC’s GHG conversion factors for company reporting. Available at: https://www.gov.uk/government/organisations/department-of-energy-climate-change. Accessed July 2017.

  • Deprá, M. C., Zepka, L. Q., & Jacob-Lopes, E. (2017). Life cycle assessment as a fundamental tool to define the biofuel performance. In Frontiers in bioenergy and biofuels. InTech. https://doi.org/10.5772/64677.

    Google Scholar 

  • Dutta, S., Neto, F., & Coelho, M. C. (2016). Microalgae biofuels: A comparative study on techno-economic analysis & life-cycle assessment. Algal Research, 20, 44–52.

    Article  Google Scholar 

  • Farooq, W., Suh, W. I., Park, M. S., & Yang, J. W. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73–81.

    Article  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate change 2007. The physical science basis (Chapter 2).

    Google Scholar 

  • Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers & Chemical Engineering, 81, 153–170.

    Article  Google Scholar 

  • Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919–4930.

    Article  Google Scholar 

  • Guieysse, B., Béchet, Q., & Shilton, A. (2013). Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresource Technology, 128, 317–323.

    Article  Google Scholar 

  • Guo, M., & Murphy, R. J. (2012). LCA data quality: Sensitivity and uncertainty analysis. Science of the Total Environment, 435, 230–243.

    Article  Google Scholar 

  • Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564–573.

    Article  Google Scholar 

  • ILCD Handbook. (2010). General guide for life cycle assessment—Detailed guidance (1st ed.). Institute for Environment and Sustainability, Joint Research Centre, European Commission.

    Google Scholar 

  • ISO—International Standard 14040. (2006). Environmental management—Life cycle assessment. Principles and framework. Geneva: International Organisation for Standardisation (ISO).

    Google Scholar 

  • ISO—International Standard 14041. (1998). Environmental management—Life cycle assessment. Goal and scope definition and Inventory analysis. Geneva: International Organisation for Standardisation (ISO).

    Google Scholar 

  • ISO—International Standard 14042. (2000). Environmental management—Life cycle assessment. Life cycle impact assessment. Geneva: International Organisation for Standardisation (ISO).

    Google Scholar 

  • ISO—International Standard 14043. (2000). Environmental management—Life cycle assessment. Life cycle interpretation. Geneva: International Organisation for Standardisation (ISO).

    Google Scholar 

  • Jacob-Lopes, E., & Franco, T. T. (2010). Microalgae-based systems for carbon dioxide sequestration and industrial biorefineries. In Biomass. InTech.

    Google Scholar 

  • Jacquemin, L., Pontalier, P. Y., & Sablayrolles, C. (2012). Life cycle assessment (LCA) applied to the process industry: A review. The International Journal of Life Cycle Assessment, 17, 1–14.

    Article  Google Scholar 

  • Jian, H., Jing, Y., & Peidong, Z. (2015). Life cycle analysis on fossil energy ratio of algal biodiesel: Effects of nitrogen deficiency and oil extraction technology. The Scientific World Journal, 2015, 9.

    Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., et al. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Article  Google Scholar 

  • Jorquera, O., Kiperstok, A., Sales, E. A., Embirucu, M., & Ghirardi, M. L. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 101(4), 1406–1413.

    Article  Google Scholar 

  • Klein, B. C., Bonomi, A., & Maciel Filho, R. (2017). Integration of microalgae production with industrial biofuel facilities: A critical review. Renewable and Sustainable Energy Reviews, 82, 1376–1392.

    Article  Google Scholar 

  • Klöpffer, W. (2006). The role of SETAC in the development of LCA. The International Journal of Life Cycle Assessment, 11, 116–122.

    Article  Google Scholar 

  • Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75–86.

    Article  Google Scholar 

  • Laratte, B., Guillaume, B., Kim, J., & Birregah, B. (2014). Modeling cumulative effects in life cycle assessment: The case of fertilizer in wheat production contributing to the global warming potential. Science of the Total Environment, 481, 588–595.

    Article  Google Scholar 

  • Liu, X., Clarens, A. F., & Colosi, L. M. (2012). Algae biodiesel has potential despite inconclusive results to date. Bioresource Technology, 104, 803–806.

    Article  Google Scholar 

  • Luo, D., Hu, Z., Choi, D. G., Thomas, V. M., Realff, M. J., & Chance, R. R. (2010). Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Environmental Science and Technology, 44(22), 8670–8677.

    Article  Google Scholar 

  • Medeiros, D. L., Sales, E. A., & Kiperstok, A. (2015). Energy production from microalgae biomass: Carbon footprint and energy balance. Journal of Cleaner Production, 96, 493–500.

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2010). A global and high-resolution assessment of the green, blue and grey water footprint of wheat (Vol. 42, pp. 1–94). Delft, The Netherlands: Unesco-IHE Institute for Water Education.

    Google Scholar 

  • Monari, C., Righi, S., & Olsen, S. I. (2016). Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life-cycle modeling. Journal of Cleaner Production, 112, 4084–4092.

    Article  Google Scholar 

  • Prox, M., & Curran, M. A. (2017). Consequential life cycle assessment. In Goal and scope definition in life cycle assessment (pp. 145–160). Springer Netherlands.

    Google Scholar 

  • Quiroz-Arita, C., Sheehan, J. J., & Bradley, T. H. (2017). Life cycle net energy and greenhouse gas emissions of photosynthetic cyanobacterial biorefineries: Challenges for industrial production of biofuels. Algal Research (in press).

    Article  Google Scholar 

  • Silva, J. A. M., Santos, J. J. C. S., Carvalho, M., & de Oliveira, S. (2017). On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems. Energy, 127, 775–785.

    Article  Google Scholar 

  • Soccol, C. R., Faraco, V., Karp, S., Vandenberghe, L. P. S., Thomaz-Soccol, V., Woiciechowski, A., et al. (2011). Biofuels: Alternative feedstocks and conversion processes.

    Google Scholar 

  • Soh, L., Montazeri, M., Haznedaroglu, B. Z., Kelly, C., Peccia, J., Eckelman, M. J., et al. (2014). Evaluating microalgal integrated biorefinery schemes: Empirical controlled growth studies and life cycle assessment. Bioresource Technology, 151, 19–27.

    Article  Google Scholar 

  • Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., et al. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488.

    Article  Google Scholar 

  • Zhang, Y., Luo, X., Buis, J. J., & Sutherland, J. W. (2015). LCA-oriented semantic representation for the product life cycle. Journal of Cleaner Production, 86, 146–162.

    Article  Google Scholar 

  • Živković, S. B., Veljković, M. V., Banković-Ilić, I. B., Krstić, I. M., Konstantinović, S. S., Ilić, S. B., et al. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 79, 222–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Jacob-Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deprá, M.C., Jacob-Lopes, E., Zepka, L.Q. (2018). Life Cycle Assessment of Biofuels from Microalgae. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics