Advertisement

Process Intensification of Biofuel Production from Microalgae

  • Saurabh Joshi
  • Parag Gogate
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

A tremendous increase in population has also led to a significant increase in the demand for energy leading to search for alternatives which can match up with the current requirement quantitatively and also qualitatively as a green energy carrier. Fuels derived from algal biomass can be one of the potential alternatives, as microalgae possess higher nutrients, required lipids and CO2 uptake capacity and can be grown quickly on nonarable land throughout the year without their interference in food supply chain. The quantum of biodiesel produced from microalgae can be about 10–20 times higher than that obtained from terrestrial plants. Microalgae also help in reducing global warming by capturing CO2. The cost of production of biofuels from microalgae is the current setback which can be overcome by taking into consideration a biorefinery approach which can give multiple products with same expenditure as well as using some process intensification approaches. Process intensification plays a major role in reducing the cost and also can lead to use of less quantum of materials and lower operating temperatures. The present chapter will focus on analyzing the process intensification aspects applied to biofuels production from microalgae. The initial sections will cover the details of the types of microalgae and their harvesting techniques, followed by the discussion on the different approaches used to extract bio-oil from microalgae, and then the production of different biofuels. Intensification can be applied to both the extraction and the actual reaction for production of biofuels. The chapter will also focus on the mechanism of intensification using different approaches such as ultrasound, microwave, ultraviolet, and oscillatory baffled reactors. An overview of the literature will be presented so as to give guidelines about the possible reactor designs and operating parameters also highlighting the process intensification benefits that can be obtained. Overall, the work is expected to bring out critical analysis of the different approaches and the expected benefits due to the use of process intensification also enabling understanding of the reactor designs and operating parameters.

Keywords

Microalgae Process intensification Biofuels Biorefinery Reactor designs 

References

  1. Abbott, M. S. R., Brain, C. M., Harvey, A. P., Morrison, M. I., & Valente, G. (2015). Liquid culture of microalgae in a photobioreactor (PBR) based on oscillatory baffled reactor (OBR) technology—A feasibility study. Chemical Engineering Science, 138, 315–323.CrossRefGoogle Scholar
  2. Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.CrossRefGoogle Scholar
  3. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298.CrossRefGoogle Scholar
  4. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.CrossRefGoogle Scholar
  5. Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2013). Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresource Technology, 138, 329–338.CrossRefGoogle Scholar
  6. Cao, P., Dubé, M. A., & Tremblay, A. Y. (2008). Methanol recycling in the production of biodiesel in a membrane reactor. Fuel, 87, 825–833.CrossRefGoogle Scholar
  7. Cao, P., Tremblay, A. Y., Dubé, M. A., & Morse, K. (2007). Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Industrial and Engineering Chemistry Research, 46, 52–58.CrossRefGoogle Scholar
  8. Carrero, A., Vicente, G., Rodríguez, R., Linares, M., & Del Peso, G. L. (2011). Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catalysis Today, 167, 148–153.CrossRefGoogle Scholar
  9. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22, 1490–1506.  https://doi.org/10.1021/bp060065r.CrossRefGoogle Scholar
  10. Chen, P. H., & Oswald, W. J. (1998). Thermochemical treatment for algal fermentation. Environment International, 24, 889–897.CrossRefGoogle Scholar
  11. Choudhary, P., Prajapati, S. K., Kumar, P., Malik, A., & Pant, K. K. (2017). Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresource Technology, 224, 276–284.CrossRefGoogle Scholar
  12. Dube, M. A., Tremblay, A. Y., & Liu, J. (2007). Biodiesel production using a membrane reactor. Bioresource Technology, 98, 639–647.CrossRefGoogle Scholar
  13. Ehimen, E. A., Holm-Nielsen, J. B., Poulsen, M., & Boelsmand, J. E. (2013). Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renewable Energy, 50, 476–480.CrossRefGoogle Scholar
  14. Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89, 677–684.CrossRefGoogle Scholar
  15. Ehimen, E. A., Sun, Z., & Carrington, G. C. (2012). Use of ultrasound and co-solvents to improve the in-situ transesterification of microalgae biomass. Procedia Environmental Sciences, 15, 47–55.  https://doi.org/10.1016/j.proenv.2012.05.009.CrossRefGoogle Scholar
  16. El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E. S., & Jeon, B. H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98–105.CrossRefGoogle Scholar
  17. Estrada-Villagrana, A. D., Quiroz-Sosa, G. B., Jiménez-Alarcón, M. L., Alemán-Vázquez, L. O., & Cano-Domínguez, J. L. (2006). Comparison between a conventional process and reactive distillation for naphtha hydrodesulfurization. Chemical Engineering and Processing: Process Intensification, 45, 1036–1040.CrossRefGoogle Scholar
  18. Ferreira, A. F., Dias, A. P. S., Silva, C. M., & Costa, M. (2016). Effect of low frequency ultrasound on microalgae solvent extraction: Analysis of products, energy consumption and emissions. Algal Research, 14, 9–16.CrossRefGoogle Scholar
  19. Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101, 8750–8754.CrossRefGoogle Scholar
  20. Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation-flotation process for algae removal. Journal of Hazardous Materials, 177, 336–343.CrossRefGoogle Scholar
  21. Gendy, T. S., & El-Temtamy, S. A. (2013). Commercialization potential aspects of microalgae for biofuel production: An overview. Egyptian Journal of Petroleum, 22, 43–51.CrossRefGoogle Scholar
  22. Ghayal, D., Pandit, A. B., & Rathod, V. K. (2013). Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrasonics Sonochemistry, 20, 322–328.CrossRefGoogle Scholar
  23. Gogate, P. R., & Pandit, A. B. (2004). Sonochemical reactors: Scale up aspects. Ultrasonics Sonochemistry, 11, 105–117.CrossRefGoogle Scholar
  24. Gole, V. L., & Gogate, P. R. (2012). Intensification of synthesis of biodiesel from nonedible oils using sonochemical reactors. Industrial and Engineering Chemistry Research, 51(37), 11866–11874.CrossRefGoogle Scholar
  25. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012a). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105–111.CrossRefGoogle Scholar
  26. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012b). Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource Technology, 110, 610–616.CrossRefGoogle Scholar
  27. Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., & Wang, G. (2013). Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 127, 422–428.CrossRefGoogle Scholar
  28. Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550–567.CrossRefGoogle Scholar
  29. Han, F., Pei, H., Hu, W., Jiang, L., Cheng, J., & Zhang, L. (2016). Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresource Technology, 209, 16–22.CrossRefGoogle Scholar
  30. Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology, 85, 199–203.Google Scholar
  31. Harvey, A. P., Mackley, M. R., & Seliger, T. (2003). Process intensification of biodiesel production using a continuous oscillatory flow reactor. Journal of Chemical Technology and Biotechnology, 78, 338–341.CrossRefGoogle Scholar
  32. He, B. B., Singh, A. P., & Thompson, J. C. (2006). A novel continuous-flow reactor using reactive distillation for biodiesel production. Transactions of the ASABE, 49, 107–112.CrossRefGoogle Scholar
  33. Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.CrossRefGoogle Scholar
  34. Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.CrossRefGoogle Scholar
  35. Jeevan Kumar, S. P., Vijay Kumar, G., Dash, A., Scholz, P., & Banerjee, R. (2017). Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 21, 138–147.CrossRefGoogle Scholar
  36. Joshi, S., Gogate, P. R., Moreira, P. F., & Giudici, R. (2017). Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry, 39, 645–653.CrossRefGoogle Scholar
  37. Kashid, M. N., & Kiwi-Minsker, L. (2009). Microstructured reactors for multiphase reactions: State of the art. Industrial and Engineering Chemistry Research, 48, 6465–6485.CrossRefGoogle Scholar
  38. Keymer, P., Ruffell, I., Pratt, S., & Lant, P. (2013). High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresource Technology, 131, 128–133.CrossRefGoogle Scholar
  39. Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express, 7, 19.CrossRefGoogle Scholar
  40. Kim, B., Im, H., & Lee, J. W. (2015). In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresource Technology, 185, 421–425.CrossRefGoogle Scholar
  41. Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W., et al. (2013). Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 31, 862–876.CrossRefGoogle Scholar
  42. Kraai, G. N., Schuur, B., van Zwol, F., van de Bovenkamp, H. H., Heeres, H. J. (2009). Novel highly integrated biodiesel production technology in a centrifugal contactor separator device. Chemical Engineering Journal, 154, 384–389.  https://doi.org/10.1016/j.cej.2009.04.047.CrossRefGoogle Scholar
  43. Lee, Y., & Li, P. (2016). Using resonant ultrasound field-incorporated dynamic photobioreactor system to enhance medium replacement process for concentrated microalgae cultivation in continuous mode. Chemical Engineering Research and Design, 118, 112–120.CrossRefGoogle Scholar
  44. Lee, K. T., Lim, S., Pang, Y. L., Ong, H. C., & Chong, W. T. (2014). Integration of reactive extraction with supercritical fluids for process intensification of biodiesel production: Prospects and recent advances. Progress in Energy and Combustion Science, 45, 54–78.CrossRefGoogle Scholar
  45. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, S75–S77.CrossRefGoogle Scholar
  46. Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., et al. (2011a). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.CrossRefGoogle Scholar
  47. Li, Y., Lian, S., Tong, D., Song, R., Yang, W., Fan, Y., et al. (2011b). One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Applied Energy, 88, 3313–3317.CrossRefGoogle Scholar
  48. Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382–388.CrossRefGoogle Scholar
  49. Mazubert, A., Poux, M., & Aubin, J. (2013). Intensified processes for FAME production from waste cooking oil: A technological review. Chemical Engineering Journal, 233, 201–223.CrossRefGoogle Scholar
  50. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.CrossRefGoogle Scholar
  51. Misra, R., Guldhe, A., Singh, P., Rawat, I., Stenstrom, T. A., & Bux, F. (2015). Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresource Technology, 176, 1–7.CrossRefGoogle Scholar
  52. Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.CrossRefGoogle Scholar
  53. Park, K. Y., Kweon, J., Chantrasakdakul, P., Lee, K., & Cha, H. Y. (2013). Anaerobic digestion of microalgal biomass with ultrasonic disintegration. International Biodeterioration & Biodegradation, 85, 598–602.CrossRefGoogle Scholar
  54. Passos, F., Hernández-Mariné, M., García, J., Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49.CrossRefGoogle Scholar
  55. Passos, F., Sole, M., Garcia, J., & Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Applied Energy, 108, 168–175.CrossRefGoogle Scholar
  56. Patel, A., Gami, B., Patel, P., Patel, B. (2016). Microalgae: Antiquity to era of integrated technology. Renewable and Sustainable Energy Reviews.  https://doi.org/10.1016/j.rser.2016.12.081.
  57. Patil, P. D., Gude, V. G., Mannarswamy, A., Cooke, P., Munson-McGee, S., Nirmalakhandan, N., et al. (2011a). Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 102, 1399–1405.CrossRefGoogle Scholar
  58. Patil, P. D., Gude, V. G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., et al. (2011b). Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 102, 118–122.CrossRefGoogle Scholar
  59. Pfaffinger, C. E., Schöne, D., Trunz, S., Löwe, H., & Weuster-Botz, D. (2016). Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Research, 20, 153–163.CrossRefGoogle Scholar
  60. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53, 150–154.CrossRefGoogle Scholar
  61. Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae—A review. Journal of Algal Biomass Utilization, 3, 89–100.Google Scholar
  62. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  63. Samson, R., & Leduy, A. (1983). Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnology Letters, 5, 671–676.CrossRefGoogle Scholar
  64. Sangaletti-Gerhard, N., Cea, M., Risco, V., & Navia, R. (2015). In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresource Technology, 179, 63–70.CrossRefGoogle Scholar
  65. Santos, N. O., Oliveira, S. M., Alves, L. C., & Cammarota, M. C. (2014). Methane production from marine microalgae Isochrysis galbana. Bioresource Technology, 157, 60–67.CrossRefGoogle Scholar
  66. Schuchardt, U., Sercheli, R., & Matheus, R. (1998). Transesterification of vegetable oils: A review general aspects of transesterification of vegetable oils acid-catalyzed processes base-catalyzed processes. Journal of the Brazilian Chemical Society, 9, 199–210.CrossRefGoogle Scholar
  67. Schwede, S., Kowalczyk, A., Gerber, M., Span, R. (2011). Influence of different cell disruption techniques on mono digestion of algal biomass. In Bioenergy Technology—World Renewable Energy Congress (pp. 41–47).  https://doi.org/10.3384/ecp1105741.
  68. Sebestyen, P., Blanken, W., Bacsa, I., Toth, G., Martin, A., Bhaiji, T., et al. (2016). Upscale of a laboratory rotating disk biofilm reactor and evaluation of its performance over a half-year operation period in outdoor conditions. Algal Research, 18, 266–272.CrossRefGoogle Scholar
  69. Shokrkar, H., Ebrahimi, S., & Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200, 380–386.CrossRefGoogle Scholar
  70. Silva, C. E. F., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51, 1833–1842.CrossRefGoogle Scholar
  71. Solovchenko, A., Pogosyan, S., Chivkunova, O., Selyakh, I., Semenova, L., Voronova, E., et al. (2014). Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Research, 6, 234–241.CrossRefGoogle Scholar
  72. Stavarache, C., Vinatoru, M., Nishimura, R., & Maeda, Y. (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry, 12, 367–372.CrossRefGoogle Scholar
  73. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16, 4316–4342.CrossRefGoogle Scholar
  74. Subhedar, P. B., Botelho, C., Ribeiro, A., Castro, R., Pereira, M. A., Gogate, P. R., et al. (2015). Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with lipozyme TL-IM. Ultrasonics Sonochemistry, 27, 530–535.CrossRefGoogle Scholar
  75. Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae—A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.CrossRefGoogle Scholar
  76. Syazwani, O., Rashid, U., & Taufiq Yap, Y. H. (2015). Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Conversion and Management, 101, 749–756.CrossRefGoogle Scholar
  77. Takagi, M., Karseno, Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101, 223–226.CrossRefGoogle Scholar
  78. Terigar, B. G., Balasubramanian, S., Lima, M., & Boldor, D. (2010). Transesterification of soybean and rice bran oil with ethanol in a continuous-flow microwave-assisted system: Yields, quality, and reaction kinetics. Energy & Fuels, 24, 6609–6615.CrossRefGoogle Scholar
  79. Umdu, E. S., Tuncer, M., & Seker, E. (2009). Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresource Technology, 100, 2828–2831.CrossRefGoogle Scholar
  80. Vergini, S., Aravantinou, A. F., & Manariotis, I. D. (2016). Harvesting of freshwater and marine microalgae by common flocculants and magnetic microparticles. Journal of Applied Phycology, 28, 1041–1049.CrossRefGoogle Scholar
  81. Wahlen, B. D., Willis, R. M., & Seefeldt, L. C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102, 2724–2730.CrossRefGoogle Scholar
  82. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.CrossRefGoogle Scholar
  83. Wen, Z., Yu, X., Tu, S. T., Yan, J., & Dahlquist, E. (2009). Intensification of biodiesel synthesis using zigzag micro-channel reactors. Bioresource Technology, 100, 3054–3060.CrossRefGoogle Scholar
  84. Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494–5500.CrossRefGoogle Scholar
  85. Zhang, Y., Li, Y., Zhang, X., & Tan, T. (2015). Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology, 196, 712–715.CrossRefGoogle Scholar
  86. Zhang, X., Ma, Q., Cheng, B., Wang, J., Li, J., & Nie, F. (2012). Research on KOH/La-Ba-Al2O3 catalysts for biodiesel production via transesterification from microalgae oil. Journal of Natural Gas Chemistry, 21, 774–779.CrossRefGoogle Scholar
  87. Zheng, Y., Roberts, M., Kelly, J., Zhang, N., & Walker, T. (2015). Harvesting microalgae using the temperature-activated phase transition of thermoresponsive polymers. Algal Research, 11, 90–94.CrossRefGoogle Scholar
  88. Zheng, M., Skelton, R. L., & Mackley, M. R. (2007). Biodiesel reaction screening using oscillatory flow meso reactors. Process Safety and Environment Protection, 85, 365–371.CrossRefGoogle Scholar
  89. Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X., & Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164, 1215–1224.CrossRefGoogle Scholar
  90. Zhou, N., Zhang, Y., Wu, X., Gong, X., & Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102, 10158–10161.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentInstitute of Chemical TechnologyMatunga, MumbaiIndia

Personalised recommendations