Skip to main content

Microalgal Production Systems with Highlights of Bioenergy Production

  • Chapter
  • First Online:
Energy from Microalgae

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The purpose of this chapter is to provide an overview of the main systems of microalgae production with highlights of biofuel production. The large-scale production systems (raceway ponds, horizontal tubular photobioreactors, and heterotrophic bioreactors) and small-scale photobioreactors (vertical and flat-plate photobioreactors) will be presented and discussed with a special emphasis on the main factors affecting its efficiency, biomass productivities reported in the literature, scaling-up, costs of construction and operation, and commercial applications. Besides this, the recent developments in microalgae cultivation systems will be reviewed in their main aspects. Finally, the criteria for selecting an appropriate bioreactor for microalgae cultivation will be presented, as well as the pros and cons of each system will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abomohra, A., Jin, W., Tu, R., Han, S., Eid, M., & Eladel, H. (2016). Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews, 64, 596–606.

    Article  Google Scholar 

  • Alias, C. B., Lopez, M. C. G. M., Fernández, F. G. A., Sevilla, J. M. G., Sanchez, J. L. G., & Grima, E. M. (2004). Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnology and Bioengineering, 87, 723–733.

    Article  Google Scholar 

  • Becker, E. W. (1994). Microalgae-biotechnology and microbiology (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Benemann, J. R., Goebel, R. P., Augenstein, D. C., & Weissman, J. C. (1982). Microalgae as a source of liquid fuels. Final technical Report to U.S. DOE BER, viewed August 24, 2016, <https://www.osti.gov/scitech/biblio/6374113>.

  • Bennett, M. C., Turn, S. Q., & Chan, W. Y. (2014). A methodology to assess open pond, phototrophic, algae production potential: A Hawaii case study. Biomass and Bioenergy, 66, 168–75.

    Article  Google Scholar 

  • Bergmann, P., & Trösch, W. (2016). Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flat-panel airlift photobioreactors with static mixers for improved light utilization: Influence of nitrate, carbon supply and photobioreactor design. Algal Research, 17, 79–86.

    Article  Google Scholar 

  • Billad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2015). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32, 1283–1300.

    Article  Google Scholar 

  • Borowitzka, M. A. (2005). Culturing microalgae in outdoor ponds. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 205–218). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  Google Scholar 

  • Burlew, J. S. (1953). Algal culture: From laboratory to pilot plant (1st ed.). Washington: Carnegie Institution of Washington.

    Google Scholar 

  • Camacho, R. F., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62, 71–86.

    Article  Google Scholar 

  • Carvalho, J. C. M., Matsudo, M. C., Bezerra, R. P., Ferreira-Camargo, L. S., & Sato, S. (2014). Microalgae bioreactors. In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal biorefineries (Vol. 1, pp. 83–126). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Chang, J. S., Show, P. L., Ling, T. C., Chen, C. Y., Ho, S. H., Tan, C. H., et al. (2017). Photobioreactors. In C. Larroche, M. Sanroman, G. Du, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Bioprocesses, bioreactors and controls (pp. 313–352). Atlanta: Elsevier.

    Chapter  Google Scholar 

  • Cheng-Wu, Z., Zmora, O., Kopel, R., & Richmond, A. (2001). An industrialsize flat glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture, 195, 35–49.

    Article  Google Scholar 

  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  • Chisti, Y. (2013). Raceways-based production of algal crude oil In C. Posten & C. Walter (Eds.), Microalgal biotechnology: Potential and production (pp. 197–216). Berlin: de Gruyter.

    Google Scholar 

  • Chisti, Y. (2016). Large-scale production of algal biomass: Raceway ponds. In F. Bux & Y. Chisti (Eds.), Algae biotechnology: Products and processes (pp. 21–40). New York: Springer.

    Chapter  Google Scholar 

  • Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Engineering in Life Sciences, 9, 254–260.

    Article  Google Scholar 

  • Collotta, M., Champagne, P., Busi, L., & Alberti, M. (2017). Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP, 61, 756760.

    Article  Google Scholar 

  • Cook, P. M. (1950). Some problems in the large-scale culture of Chlorella (pp. 53–75). Yellow Springs, OH: The Culture Foundation.

    Google Scholar 

  • Crowe, B., Attalah, S., Agrawal, S., Waller, P., Ryan, R., Van Wagenen, J., et al. (2012). A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: Conventional raceways versus the arid pond with superior temperature management. International Journal of Chemical Engineering and Applications, 2012, 9–21.

    Google Scholar 

  • Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104, 352–359.

    Article  Google Scholar 

  • de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., et al. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology, 153, 307–314.

    Article  Google Scholar 

  • Department of Energy (DOE). (2010). National algal biofuels technology roadmap, viewed August 24, 2016, <https://www1.eere.energy.gov/bioenergy/pdfs/algal_biofuels_roadmap.pdf>.

  • Eustance, E., Badvipour, S., Wray, J. T., & Sommerfeld, M. R. (2015). Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. Journal of Applied Phycology, 28, 1471–1483.

    Article  Google Scholar 

  • Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893–913.

    Article  Google Scholar 

  • Fernandes, B. D., Mota, A., Ferreira, A., Dragone, D., Teixeira, J. A., & Vicente, A. A. (2014). Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 117, 445–454.

    Article  Google Scholar 

  • Fernandez, F. G. A., Camacho, A. C., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55, 701–714.

    Article  Google Scholar 

  • Fernandez, F. G. A., Sevilla, J. M. F., & Grima, E. M. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology, 12, 131–151.

    Article  Google Scholar 

  • Fernández, F. G. A., Sevilla, J. M. F., Pérez, J. A. S., Grima, E. M., & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chemical Engineering Science, 56, 2721–2732.

    Article  Google Scholar 

  • Francisco, E. C., Franco, T. T., Wagner, R., & Jacob-Lopes, E. (2014). Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess and Biosystems Engineering, 37, 1497–505.

    Article  Google Scholar 

  • Francisco, E. C., Franco, T. T., Zepka, L. Q., & Jacob-Lopes, E. (2015). From waste-to-energy: The process integration and intensification for bulk oil and biodiesel production by microalgae. Journal of Environmental Chemical Engineering, 3, 482–487.

    Article  Google Scholar 

  • Gao, F., Yang, Z. H., Li, C., Wang, Y. J., Jin, W. H., & Deng, Y. B. (2014). Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresource Technology, 167, 441–446.

    Article  Google Scholar 

  • Griffiths, D. J., Thresher, C. L., & Street, H. E. (1960). The heterotrophic nutrition of Chlorella vulgaris (brannon no. 1 strain). Annals of Botany, 24, 1–11.

    Article  Google Scholar 

  • Grima, E. M. (2009). Algae biomass in Spain: A case study. In First European Algae Biomass Association Conference & General Assembly, Florence.

    Google Scholar 

  • Grima, E. M., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  • Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Applied Microbiology and Biotechnology, 99, 5781–5789.

    Article  Google Scholar 

  • Harder, R., & von Witsch, H. (1942). Ueber Massenkultur von Diatomeen. Ber. Dtsch. Bot. Ges., 60, 14–153.

    Google Scholar 

  • Heidari, M., Kariminia, H. R., & Shayegan, J. (2016). Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Safety and Environmental Protection, 104, 111–122.

    Article  Google Scholar 

  • Hoh, D., Watson, S., & Kan, E. (2015). Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review. Chemical Engineering Journal, 287, 466–473.

    Article  Google Scholar 

  • Hu, Q., Fairman, D., & Richmond, A. (1998). Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. Journal of Fermentation and Bioengineering, 85, 230–236.

    Article  Google Scholar 

  • Hu, Q., Guterman, H., & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51, 51–60.

    Article  Google Scholar 

  • Hu, Q., & Richmond, A. (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6, 391–396.

    Article  Google Scholar 

  • Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.

    Article  Google Scholar 

  • Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48, 306–310.

    Article  Google Scholar 

  • Jacob-Lopes, E., Zepka, L. Q., Merida, L. G. R., Maroneze, M. M., & Neves, C. (2014). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. BR n. PI2014000333.

    Google Scholar 

  • Janssen, M., Tramper, J., Mur, L., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering, 81, 193–210.

    Article  Google Scholar 

  • Jiménez, C., Cossío. B. R., & Niell, F. X. (2003). Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture, 221, 331–45.

    Article  Google Scholar 

  • Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Enegies, 6, 4607–4638.

    Google Scholar 

  • Junying, Z., Junfeng, R., & Baoning, Z. (2013). Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34, 80–100.

    Article  Google Scholar 

  • Katiyar, R., Gurjar, B. R., Bharti, R. Q., Kumar, A., Biswas, S., & Pruthi, V. (2017). Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production. Renewable Energy, 113, 1359–1365.

    Article  Google Scholar 

  • Koller, M. (2015). Design of closed photobioreactors for algal cultivation. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 139–186). Switzerland: Springer International Publishing.

    Google Scholar 

  • Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial and Engineering Chemistry Research, 49, 3516–3526.

    Article  Google Scholar 

  • Lal, A., & Das, D. (2016). Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803. 3 Biotech, 6, 41–51.

    Article  Google Scholar 

  • Li, J., Stamato, M., Velliou, E., Jeffryes, C., & Agathos, S. N. (2014). Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. Journal of Applied Phycology, 27, 75–86.

    Article  Google Scholar 

  • Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.

    Article  Google Scholar 

  • Lin, Q., & Lin, J. (2011). Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresource Technology, 102, 1615–1621.

    Article  Google Scholar 

  • Lopez, M. C. G., Del Rio Sanchez, E., Lopez, J. L. C., Fernandez, F. G. A., Sevilla, J. M. F., Rivas, J., et al. (2006). Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 123, 329–42.

    Article  Google Scholar 

  • López, C. V. G., Fernández, F. G. A., Sevilla, J. M. F., Fernández, J. F. S., García, M. C. F., & Grima, E. M. (2009). Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresource Technology, 100, 5904–5910.

    Article  Google Scholar 

  • Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22, 573–578.

    Article  Google Scholar 

  • Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, A. (2010). Realistic technology and engineering assessment of algae biofuel production. Berkeley: Energy Biosciences Institute, University of California.

    Google Scholar 

  • Luo, Y., Le-Clech, P., & Henderson, R. K. (2016). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437.

    Article  Google Scholar 

  • Marbella, L., Bilad, M. R., Passaris, I., Discart, V., Bañadme, D., Beuckels, A., et al. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228–235.

    Article  Google Scholar 

  • Maroneze, M. M., Barin, J. S., Menezes, C. R., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2014). Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola, 71, 521–524.

    Article  Google Scholar 

  • Maroneze, M. M., Siqueira, S. F., Vendruscolo, R. G., Wagner, R., Menezes, C. R., Zepka, L. Q., et al. (2016). The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresource Technology, 219, 493–499.

    Article  Google Scholar 

  • Mirón, A. S., Gómez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 70, 249–270.

    Article  Google Scholar 

  • Münkel, R., Schmid-Staiger, U., Werner, A., & Hirth, T. (2013). Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnology and Bioengineering, 110, 2882–2893.

    Article  Google Scholar 

  • Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production-a close look at the economics. Biotechnology Advances, 29, 24–27.

    Article  Google Scholar 

  • Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.

    Article  Google Scholar 

  • Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.

    Article  Google Scholar 

  • Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 61–132). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45, 11–36.

    Article  Google Scholar 

  • Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137, 139–146.

    Article  Google Scholar 

  • Pruvost, J., Le Borgne, F., Artu, A., & Legrand, J. (2017). Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm©) based on process intensification principles. Algal Research, 21, 120–137.

    Article  Google Scholar 

  • Pulz, O., & Scheibenbogen, K. (1998). Photobioreactors: Design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology, 59, 123–152.

    Article  Google Scholar 

  • Queiroz, M. I., Hornes, M. O., Silva-Manetti, A. G., & Jacob-Lopes, E. (2011). Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Applied Energy, 88, 3438–3443.

    Article  Google Scholar 

  • Ramírez-Mérida, L. G. R., Zepka, L. Q., & Jacob-Lopes, E. (2017). Current production of microalgae at industrial scale. In J. C. M. Pires (Ed.), Recent advances in renewable energy (pp. 242–260). Sharjah: Bentham Science Publishers.

    Google Scholar 

  • Raslavičius, L., Striūgas, N., & Felneris, M. (2018). New insights into algae factories of the future. Renewable and Sustainable Energy Reviews, 81, 643–654.

    Article  Google Scholar 

  • Raso, S., van Genugten, B., Vermuë, M., & Wijffels, R. H. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.

    Article  Google Scholar 

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.

    Article  Google Scholar 

  • Richmond, A. (1990). Large scale microalgal culture and applications. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (pp. 269–330). Britol: Biopress Ltd.

    Google Scholar 

  • Richmond, A., & Cheng-Wu, Z. (2001). Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology, 85, 259–269.

    Article  Google Scholar 

  • Roso, G. R., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery. Current Biotechnology, 4, 547–553.

    Article  Google Scholar 

  • San Pedro, A., González-López, C. V., Acién, F. G., & Grima, E. M. (2014). Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresource Technology, 169, 667–676.

    Article  Google Scholar 

  • Santos, A. M., Deprá, M. C., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). Aeration energy requirements in microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Current Biotechnology, 4, 249–254.

    Article  Google Scholar 

  • Scott, S. A., Davey, M. P., Dennis, J. S., Horst, O., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.

    Article  Google Scholar 

  • Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138, 136–147.

    Article  Google Scholar 

  • Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—a review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.

    Article  Google Scholar 

  • Su, H., Zhou, X., Xia, X., Sun, Z., & Zhang. Y. (2017a). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.

    Article  Google Scholar 

  • Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017b). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.

    Article  Google Scholar 

  • Suh, I. S., & Lee, C. G. (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering, 8, 313–321.

    Article  Google Scholar 

  • Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., & Piencos, P. T. (2011). Comparative cost analysis of algal oil production for biofuels. Energy, 36, 5169–5179.

    Article  Google Scholar 

  • Tabernero, A., Martín del Valle, E. M., & Galán, M. A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.

    Article  Google Scholar 

  • Tao, Q., Gao, F., Qian, C. Y., Guo, X. Z., Zheng, Z., & Yang, Z. H. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.

    Article  Google Scholar 

  • Torzillo, G. (1997). Tubular bioreactors. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Phisiology, cell-biology and biotechnology (1st ed., pp. 101–115). London: Taylor and Francis.

    Google Scholar 

  • Torzillo, G., Zittelli, G. C., & Chini Zittelli, G. (2015). Tubular photobioreactors. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 187–212). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Tredici, M. R., Carlozzi, P., Zittelli, G. C., & Materassi, R. (1991). A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technology, 38, 153–159.

    Article  Google Scholar 

  • Tredici, M. R., & Materassi, R. (1992). From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. Journal of Applied Phycology, 4, 221–231.

    Article  Google Scholar 

  • Tredici, M. R., Rodolfi, L., Biondi, N., Bassi, N., & Sampietro, G. (2016). Techno-economic analysis of microalgal biomass production in a 1-há Green Wall Panel (GWP®) plant. Algal Research, 19, 253–263.

    Article  Google Scholar 

  • Tuantet, K., Temmink, H., Zeeman, G., Janssen, M., Wijffels, R. H., & Buisman, C. J. N. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 55, 162–174.

    Article  Google Scholar 

  • Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

    Article  Google Scholar 

  • Ugwu, C. U., Ogbonna, J. C., & Tanaka, H. (2002). Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Applied Microbiology and Biotechnology, 58, 600–607.

    Article  Google Scholar 

  • Vieira, J. G., Manetti, A. G. S., Jacob-Lopes, E., & Queiroz, M. I. (2012). Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalination and Water Treatment, 40, 224–230.

    Article  Google Scholar 

  • Waltz, E. (2009). Biotech’s green gold? Nature Biotechnology, 27, 15–18.

    Article  Google Scholar 

  • Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.

    Article  Google Scholar 

  • Wang, S. K., Hu, Y. R., Wang, F., Stiles, M. R., & Liu, C. Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.

    Article  Google Scholar 

  • Wang, C. H., Sun, Y. Y., Xing, R. L., & Sun, L. Q. (2005). Effect of liquid circulation velocity and cell density on the growth of Parietochloris incisa in flat plate photobioreactors. Biotechnology and Bioprocess Engineering, 10, 103–108.

    Article  Google Scholar 

  • Watanabe, Y., de la Noue, J., & Hall, D. O. (2011). Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnology and Bioengineering, 47, 261–269.

    Article  Google Scholar 

  • Wen, X., Du, K., Wang, Z., Peng, X., Luo, L., Tao, H., et al. (2016). Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnology for Biofuels, 9, 123–135.

    Article  Google Scholar 

  • Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.

    Article  Google Scholar 

  • Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24, 1767–1771.

    Article  Google Scholar 

  • Zitelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for biofuel production. In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for biofuels and energy (pp. 115–131). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Queiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroneze, M.M., Queiroz, M.I. (2018). Microalgal Production Systems with Highlights of Bioenergy Production. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics