Recent Patents on Biofuels from Microalgae

  • Ahmad Farhad Talebi
  • Meisam Tabatabaei
  • Mortaza Aghbashlo
Part of the Green Energy and Technology book series (GREEN)


To reduce greenhouse gas emissions and to prevent their devastative impacts of human health and the environment, bioenergy carriers have been at center of attention to supply global energy demand. Microalgae as solar energy-driven factories could efficiently convert carbon dioxide to a variety of hydrocarbons that can be used as biofuels. With the aim of realizing the current status of algal biofuels, respective patents were surveyed in this chapter using various databases, i.e., World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office database. Information derived from the aforementioned databases was categorized into three: upstream, mainstream, and downstream strategies. The upstream strategies included patents on selection of algal strain and genetic engineering approaches while the mainstream strategies reviewed and discussed innovations pertaining to improving algal cultivation systems, production media and nutrients supply, and CO2 supply. Finally, in the downstream strategies section, the inventions aimed at enhancing harvesting and dewatering of microalgae cells and lipid extraction were presented.


Patent mining Innovation Microalgae Biofuels Biodiesel 


  1. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRefGoogle Scholar
  2. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology Advances, 26, 126–131.CrossRefGoogle Scholar
  3. Courchesne, N. M. D., Parisien, Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141, 31–41.CrossRefGoogle Scholar
  4. Craggs, R., Heubeck, S., Lundquist, T., & Benemann, J. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660–665.CrossRefGoogle Scholar
  5. Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337.CrossRefGoogle Scholar
  6. de la Jara, A., Assunção, P., Portillo, E., Freijanes, K., & Mendoza, H. (2016). Evolution of microalgal biotechnology: A survey of the European Patent Office database. Journal of Applied Phycology, 28(5), 2727–2740.CrossRefGoogle Scholar
  7. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1611–1627.CrossRefGoogle Scholar
  8. Faba, L., Díaz, E., & Ordóñez, S. (2015). Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renewable and Sustainable Energy Reviews, 51, 273–287.CrossRefGoogle Scholar
  9. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186–193.CrossRefGoogle Scholar
  10. Lardon, L., Hlias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43, 6475–6481.CrossRefGoogle Scholar
  11. Lee, J. W. (2010). Switchable photosystem-II designer algae for photobiological hydrogen production. US Patent 7642405B2.Google Scholar
  12. Medina, C., García, R., Reyes, P., Fierro, J. L. G., & Escalona, N. (2010). Fischer-Tropsch synthesis from a simulated biosyngas feed over Co(x)/SiO2 catalysts: Effect of co-loading. Applied Catalysis A: General, 373, 71–75.CrossRefGoogle Scholar
  13. Ndimba, B. K., Ndimba, R. J., Johnson, T. S., Waditee-Sirisattha, R., Baba, M., Sirisattha, S., et al. (2013). Biofuels as a sustainable energy source: An update of the applications of proteomics in bioenergy crops and algae. Journal of proteomics, 93, 234–244.CrossRefGoogle Scholar
  14. Park, J. B. K., & Craggs, R. J. (2011). Nutrient removal and nitrogen balances in high rate algal ponds with carbon dioxide addition. Water Science and Technology, 63(8), 1758–1764.CrossRefGoogle Scholar
  15. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.CrossRefGoogle Scholar
  16. Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287–293.CrossRefGoogle Scholar
  17. Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L., & Perez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268.CrossRefGoogle Scholar
  18. Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58–64.CrossRefGoogle Scholar
  19. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.CrossRefGoogle Scholar
  20. Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416.CrossRefGoogle Scholar
  21. Tabernero, A., Martín del Valle, E. M., & Galan, M. A. (2013). Microalgae technology: A patent survey. International Journal of Chemical Reactor Engineering, 11(2), 733–763.CrossRefGoogle Scholar
  22. Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Zeinalabedini, M., Hadavand, H., et al. (2013a). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 258–267.CrossRefGoogle Scholar
  23. Talebi, A. F., Tohidfar, M., Tabatabaei, M., Bagheri, A., Mohsenpor, M., & Mohtashami, S. K. (2013b). Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Molecular Biology Reports, 40(7), 4421–4428.CrossRefGoogle Scholar
  24. Thompson, S. P. (2013). Biofuel patent trends: 2012 in review. Industrial Biotechnology, 9(1), 13–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmad Farhad Talebi
    • 1
  • Meisam Tabatabaei
    • 2
    • 3
  • Mortaza Aghbashlo
    • 4
  1. 1.Faculty of Microbial BiotechnologySemnan UniversitySemnanIran
  2. 2.Agricultural Biotechnology Research Institute of IranKarajIran
  3. 3.Biofuel Research TeamKarajIran
  4. 4.College of Agriculture and Natural ResourcesUniversity of TehranKarajIran

Personalised recommendations