Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

This analysis measures the charged-current quasi-elastic cross-section for anti-neutrinos incident on the plastic scintillator (CH) tracker region of the MINERvA detector. In the free-nucleon case, this interaction would be represented by: The interaction is explained in detail in Sect. 2.2. A true charged-current quasi-elastic (CCQE) antineutrino scattering interaction should produce a characteristic signature: an outgoing positive muon plus a recoil neutron. Thus, in general, our reconstruction should attempt to identify final states with this configuration, while rejecting events from other processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Abe et al., Measurement of the ν μ charged-current quasielastic cross section on carbon with the ND280 detector at T2K. Phys. Rev. D 92, 112003 (2015)

    Google Scholar 

  2. K. Abe et al., Measurement of the ν μ charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam. Phys. Rev. D 91, 112002 (2015)

    Google Scholar 

  3. K. Abe et al., Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam (2016). arXiv 1602.03652 (physics.hep-ex)

    Google Scholar 

  4. N. Abgrall et al., Time projection chambers for the T2K near detectors. Nucl. Instrum. Methods A 637, 25–46 (2011)

    Google Scholar 

  5. A.A. Aguilar-Arevalo et al., First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010)

    Google Scholar 

  6. A.A. Aguilar-Arevalo et al., First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 88, 032001 (2013)

    Google Scholar 

  7. C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods Phys. Res., Sect. A 614(1), 87–104 (2010)

    Google Scholar 

  8. G. Barrand et al., GAUDI – the software architecture and framework for building LHCb data processing applications, in Proceedings, 11th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2000) (2000), pp. 92–95

    Google Scholar 

  9. M. Betancourt, MINOS tracking efficiencies for ME energy (2015). Available at http://minerva-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=11642

  10. R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997)

    Google Scholar 

  11. L. Fields et al., Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at E ν  ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022501 (2013)

    Google Scholar 

  12. G.A. Fiorentini et al., Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at E ν  ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022502 (2013)

    Google Scholar 

  13. MiniBooNE Collaboration, The MiniBooNE Detector. Nucl. Instrum. Methods A 599, 28–46 (2009)

    Google Scholar 

  14. J. Park et al., Measurement of neutrino flux from neutrino-electron elastic scattering (2016). arXiv:1512.07699 (physics.ins-det)

    Google Scholar 

  15. J.S. Ratchford, Identifying muons for neutrino oscillation and cross section experiments. PhD thesis, Texas U., ARL, 2012

    Google Scholar 

  16. P. Rodrigues, C. Wilkinson, K. McFarland, Constraining the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data (2016). arXiv 1601.01888 (physics.hep-ex)

    Google Scholar 

  17. R. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008)

    Article  ADS  Google Scholar 

  18. T. Walton, M. Betancourt et al., Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at \(\left <\mathrm {E}_\nu \right > =4.2\mathrm {GeV}\). Phys. Rev. D 91, 071301 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patrick, C.E. (2018). Charged-Current Quasi-Elastic Event Selection. In: Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69087-2_4

Download citation

Publish with us

Policies and ethics