Skip to main content

Space-Optimal Proportion Consensus with Population Protocols

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10616))

Abstract

Population protocols provide a distributed computing model in which a set of finite-state identical agents cooperate through random interactions, between neighbors in the interaction graph, to collectively carry out a computation in a distributed setting. Population protocols have become very popular in various research areas, such as distributed computing, sensor or social networks, as well as chemistry and biology. A central task in this model is majority computation, in which agents need to reach an agreement on the leading one of two possible initial opinions. In this paper we consider a generalization of the majority problem, named proportion consensus, which asks for an agreement on the proportion of one opinion, between two possible views (say \(\mathcal A\) or \(\mathcal B\)). The objective is to reach a configuration where all the agents agree on a range \(\gamma _A \subseteq [0,1]\) which contains the value of the fraction \(\rho _A\) of agents that started with view \(\mathcal A\); the goal is to get the size of \(\gamma _A\) as small as possible while also minimizing the number of states adopted by agents. We provide a lower bound on the trade-off between precision \(\epsilon \) (the size of \(\gamma _A\)) and the number of states required by any population protocol that solves the proportion consensus problem. In particular, we show that in any population protocol that solves the proportion consensus problem with precision \(\epsilon \), any agent must have at least \(\lceil 2/\epsilon \rceil \) states. We also provide a population protocol that exactly solves the proportion consensus problem with precision \(\epsilon \) and \(6\lceil 1/(2\epsilon ) \rceil -1\) states. We show that in case of an arbitrary interaction graph our protocol requires \(O(n^6/\epsilon )\) interactions (which corresponds to the number of rounds in the sequential communication model) on any network with n agents. On complete interaction networks, the expected number of required interactions is \(O(n^2 \log n)\). Using the random matching communication model, the expected number of rounds, required to reach a consensus, decreases to \(O(\varDelta n^4/\epsilon )\) in case of arbitrary interaction networks (where \(\varDelta \) denotes the maximum degree among the agents in the network) and \(O(n \log n)\) for complete networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The Stabilizing Consensus has been defined in [8], relaxing one of the requirements of the original consensus problem: agents know when the consensus has been reached.

References

  1. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space trade-offs in population protocols. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19 January, pp. 2560–2579 (2017)

    Google Scholar 

  2. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-Optimal Majority in Population Protocols. ArXiv e-prints arXiv:1704.04947, April 2017

  3. Alistarh, D., Dudek, B., Kosowski, A., Soloveichik, D., Uznanski, P.: Robust detection in leak-prone population protocols. arXiv arXiv:1706.09937 (2017)

    MATH  Google Scholar 

  4. Alistarh, D., Gelashvili, R., Vojnović, M.: Fast and exact majority in population protocols. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, New York, NY, USA, pp. 47–56 (2015)

    Google Scholar 

  5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  Google Scholar 

  6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 292–299. ACM (2006)

    Google Scholar 

  7. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

    Article  Google Scholar 

  8. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 37–50. Springer, Heidelberg (2006). doi:10.1007/11776178_3

    Chapter  Google Scholar 

  9. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bull. Eur. Assoc. Theoret. Comput. Sci. 93, 98–117 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in population protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Cham (2013). doi:10.1007/978-3-319-03850-6_4

    Chapter  Google Scholar 

  11. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Raghavendra, P., Trevisan, L.: Friend or Foe? Population Protocols can perform Community Detection. ArXiv e-prints arXiv:1703.05045, March 2017

  12. Berenbrink, P., Friedetzky, T., Kling, P., Mallmann-Trenn, F., Wastell, C.: Plurality consensus in arbitrary graphs: lessons learned from load balancing. In: 24th Annual European Symposium on Algorithms (ESA 2016), pp. 10:1–10:18 (2016)

    Google Scholar 

  13. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  14. Cordasco, G., Gargano, L.: Label propagation algorithm: a semi-synchronous approach. Int. J. Soc. Netw. Mining (IJSNM) 1(1), 3–26 (2012)

    Article  Google Scholar 

  15. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006). doi:10.1007/11776178_4

    Chapter  Google Scholar 

  16. Draief, M., Vojnovi, M.: Convergence speed of binary interval consensus. SIAM J. Control Optim. 50(3), 1087–1109 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gasieniec, L., Hamilton, D., Martin, R., Spirakis, P.G., Stachowiak, G.: Deterministic population protocols for exact majority and plurality. In: 20th International Conference on Principles of Distributed Systems (OPODIS 2016), vol. 70, pp. 14:1–14:14 (2017)

    Google Scholar 

  18. Gasieniec, L., Stachowiak, G.: Fast space optimal leader election in population protocols. arXiv e-prints arXiv:1704.07649

  19. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Stably computing order statistics with arithmetic population protocols. In: 41st International Symposium on Mathematical Foundations of Computer Science, MFCS, pp. 68:1–68:14 (2016)

    Google Scholar 

  20. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determining majority in networks with local interactions and very small local memory. Distrib. Comput. 30(1), 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  21. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-stabilizing leader election in mediated population protocol. Distrib. Comput. 25(6), 451–460 (2012)

    Article  Google Scholar 

  22. Mocquard, Y., Anceaume, E., Aspnes, J., Busnel, Y., Sericola, B.: Counting with population protocols. In: 2015 IEEE 14th International Symposium on Network Computing and Applications (NCA), pp. 35–42, September 2015

    Google Scholar 

  23. Mocquard, Y., Anceaume, E., Sericola, B.: Optimal proportion computation with population protocols. In: 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), pp. 216–223, October 2016

    Google Scholar 

  24. Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus on complete graphs. IEEE INFOCOM 2009, 2527–2535 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Cordasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cordasco, G., Gargano, L. (2017). Space-Optimal Proportion Consensus with Population Protocols. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69084-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69083-4

  • Online ISBN: 978-3-319-69084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics