Skip to main content

The Evolution of Gene Regulatory Mechanisms in Bacteria

  • Chapter
  • First Online:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB))

Abstract

Modern bacteria regulate the expression of their genes through a spectrum of mechanisms ranging from the very simple to those that are highly complex. The regulatory mechanisms have evolved in concert with the means to detect changes to the physical or chemical environment, equipping the organism to respond to change. Regulation can be imposed at each stage of gene expression, and the networking of genes through coordinated control makes for multidimensional relationships that vary in time and space. Understanding how this regulatory complexity evolved is not a trivial matter, but it can be attempted. In one popular view, an ‘RNA world’ may have preceded the modern one with its DNA-based genomes. Looking for evidence of RNA-based gene regulation has been very fruitful and shows that gene control at this level is still very much in use: the conversion of genetic information held in RNA into protein by translation involves processes that are open to control at several levels. In DNA-based genomes, transcription is a fundamental process, and over evolutionary time bacterial cells have invested heavily in mechanisms that control it. Mechanisms that influence the activity of RNA polymerase are legion but fall into two categories: those that impede and those that assist the polymerase in the process of reading genetic information. It seems that simply turning genes on or off is rarely sufficient: it was necessary to evolve mechanisms for tuning transcription to the needs of the cell to promote survival, regardless of the size or level of sophistication of the organism’s genome. These regulatory mechanisms have evolved in ways that make their operations ‘noisy’, and this noise can be useful in generating physiological variety among genetically identical bacterial cells. It is becoming clear that the evolutionary forces that shape the bacterial nucleoid also guide the development of gene regulatory elements. For this reason the evolution of bacterial gene regulatory mechanisms will also be considered in the context of bacterial genome architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Xue Y, Lee SK et al (2016) RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 44(13):6335–6349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed W, Menon S, Karthik PV et al (2016) Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Res 44(4):1541–1552

    Article  PubMed  Google Scholar 

  • Bae W, Xia B, Inouye M et al (2000) Escherichia coli CspA-family chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97(14):7784–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balandina A, Claret L, Hengge-Aronis R et al (2001) The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol 39(4):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920

    Article  CAS  PubMed  Google Scholar 

  • Bang IS, Audia JP, Park YK et al (2002) Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol Microbiol 44(5):1235–1250

    Article  CAS  PubMed  Google Scholar 

  • Barquist L, Vogel J (2015) Accelerating discovery and functional analysis of small RNAs with new technologies. Annu Rev Genet 49:367–394

    Article  CAS  PubMed  Google Scholar 

  • Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer WR, Crick FHC, White JH (1980) Supercoiled DNA. Sci Am 243(1):100–113

    CAS  PubMed  Google Scholar 

  • Beloin C, Exley R, Mahe A et al (2000) Characterisation of LrpC DNA-binding properties and regulation of Bacillus subtilis lrpC gene expression. J Bacteriol 182(16):414–4424

    Article  Google Scholar 

  • Boles TC, White JH, Cozzarelli NR (1990) Structure of plectonemically supercoiled DNA. J Mol Biol 213(4):931–951

    Article  CAS  PubMed  Google Scholar 

  • Booth A, Mariscal C, Doolittle WF (2016) The modern synthesis in the light of microbial genomics. Annu Rev Microbiol 70:279–297

    Article  CAS  PubMed  Google Scholar 

  • Bordes P, Conter A, Morales V, Bouvier J, Kolb A, Gutierrez C (2003) DNA supercoiling contributes to disconnect signaS accumulation from sigmaS-dependent transcription in Escherichia coli. Mol Microbiol 48(2):561–571

    Article  CAS  PubMed  Google Scholar 

  • Bowman JC, Hud NV, Williams LD (2015) The ribosome challenge to the RNA world. J Mol Evol 80(3):143–161

    Article  CAS  PubMed  Google Scholar 

  • Brambilla E, Sclavi B (2015) Gene regulation by H-NS as a function of growth conditions depends on chromosomal position in Escherichia coli. G3 (Bethesda) 5(4):605–614

    Article  CAS  Google Scholar 

  • Brock TD (1990) The emergence of bacterial genetics. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Browning DF, Busby SJ (2016) Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 14(10):638–650

    Article  CAS  PubMed  Google Scholar 

  • Bryant JA, Sellars LE, Busby SJ et al (2014) Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 42(18):11383–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess BR, Richardson JP (2001) RNA passes through the hole of the protein hexamer in the complex with the Escherichia coli Rho factor. J Biol Chem 276(6):4182–4189

    Article  CAS  PubMed  Google Scholar 

  • Cameron AD, Dorman CJ (2012) A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLoS Genet 8(3):e1002615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron AD, Stoebel DM, Dorman CJ (2011) DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 80(1):85–101

    Article  CAS  PubMed  Google Scholar 

  • Cameron AD, Dillon SC, Kröger C, Beran L, Dorman CJ (2017) Broad scale redistribution of mRNA abundance and transcriptional machinery in response to growth rate in Salmonella enterica serovar Typhimurium. Microb Genom 3(10):e000127

    PubMed  PubMed Central  Google Scholar 

  • Cardinale CJ, Washburn RS, Tadigotia VR et al (2008) Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320(5878):935–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll RK, Liao X, Morgan LK, Cicirelli EM, Li Y, Sheng W, Feng X, Kenney LJ (2009) Structural and functional analysis of the C-terminal DNA binding domain of the Salmonella typhimurium SPI-2 response regulator SsrB. J Biol Chem 284(18):12008–12019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR (2009) Crawling out of the RNA world. Cell 136(4):599–602

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Mizusaki H, Kenney LJ (2015) A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection. PLoS Biol 13(4):e1002116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Citti C, Blanchard A (2013) Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol 21(4):196–203

    Article  CAS  PubMed  Google Scholar 

  • Colgan AM, Quinn HJ, Kary SC, Mitchenall LA, Maxwell A, Cameron ADS, Dorman CJ (2018) Negative supercoiling of DNA by gyrase is inhibited in serovar Typhimurium during adaptation to acid stress. Mol Microbiol 107(6):734–746

    Article  CAS  PubMed  Google Scholar 

  • Conter A, Menchon C, Gutierrez C (1997) Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol 273(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Cooper S, Helmstetter CE (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31(3):519–540

    Article  CAS  PubMed  Google Scholar 

  • Corbett D, Bennett HJ, Askar H et al (2007) SlyA and H-NS regulate transcription of the Escherichia coli K5 capsule gene cluster, and expression of slyA in Escherichia coli is temperature-dependent, positively autoregulated, and independent of H-NS. J Biol Chem 282(46):33326–33335

    Article  CAS  PubMed  Google Scholar 

  • Crozat E, Philippe N, Lenski RE et al (2005) Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 169(2):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozat E, Winkworth C, Gaffé J et al (2010) Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. Mol Biol Evol 27(9):2113–2128

    Article  CAS  PubMed  Google Scholar 

  • Crozat E, Hindré T, Kühn L et al (2011) Altered regulation of the OmpF porin by Fis in Escherichia coli during an evolution experiment and between B and K-12 strains. J Bacteriol 193(2):429–440

    Article  CAS  PubMed  Google Scholar 

  • Dame RT, Noom MC, Wuite GJL (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444(7117):387–390

    Article  CAS  PubMed  Google Scholar 

  • Deighan P, Free A, Dorman CJ (2000) A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability. Mol Microbiol 38(1):126–139

    Article  CAS  PubMed  Google Scholar 

  • Desnoyers G, Morissette A, Prévost K, Massé E (2009) Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J 28(11):1551–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8(3):185–195

    Article  CAS  PubMed  Google Scholar 

  • Dillon SC, Cameron AD, Hokamp K et al (2010) Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 76(5):1250–1265

    Article  CAS  PubMed  Google Scholar 

  • Doose G, Alexis M, Kirsch R et al (2013) Mapping the RNA-Seq trash bin: unusual transcripts in prokaryotic transcriptome sequencing data. RNA Biol 10(7):1204–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordet-Frisoni E, Sagne E, Baranowski E, Breton M, Nouvel LX, Blanchard A, Marenda MS, Tardy F, Pascal S-P, Citti C (2014) Chromosomal transfers in Mycoplasmas: when minimal genomes go mobile. MBio 5(6):e01958-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorman CJ (2007) H-NS, the genome sentinel. Nat Rev Microbiol 5(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Dorman CJ (2009) Regulatory integration of horizontally-transferred genes in bacteria. Front Biosci (Landmark Ed) 14:4103–4112

    CAS  Google Scholar 

  • Dorman CJ (2011) Regulation of transcription by DNA supercoiling in Mycoplasma genitalium: global control in the smallest known self-replicating genome. Mol Microbiol 81(2):302–304

    Article  CAS  PubMed  Google Scholar 

  • Dorman CJ (2013) Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 11(5):349–355

    Article  CAS  PubMed  Google Scholar 

  • Dorman CJ, Dorman MJ (2016) DNA supercoiling is a fundamental regulatory principle in the control of gene expression. Biophys Rev 8(3):209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorman CJ, Dorman MJ (2017) Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium. Environ Microbiol 19(10):3834–3845. https://doi.org/10.1111/1462-2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorman CJ, Barr GC, Ní Bhriain N et al (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 170(6):2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorman CJ, Colgan A, Dorman MJ (2016) Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 130(14):1165–1177

    Article  CAS  Google Scholar 

  • Drolet M, Broccoli S, Rallu F et al (2003) The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8:d210–d221

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Shatalin K, Ephstein V et al (2011) Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146(4):533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ephstein V, Dutta D, Wade J et al (2010) An allosteric mechanism of Rho-dependent transcription termination. Nature 463(7278):245–249

    Article  CAS  Google Scholar 

  • Fass E, Groisman EA (2009) Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12(2):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fassler JS, Arnold GF, Tessman I (1986) Reduced superhelicity of plasmid DNA produced by the rho-15 mutation in Escherichia coli. Mol Gen Genet 204(3):424–429

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Zhang Y, Ebright RH (2016) Structural basis of transcription activation. Science 352(6291):1330–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer D, Eisenberg D (1997) Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc Natl Acad Sci USA 94(22):11929–11934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald S, Dillon SC, Chao TC et al (2015) Re-engineering cellular physiology by rewiring high-level global regulatory genes. Sci Rep 5:17653. https://doi.org/10.1038/srep17653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Fürtig B, Nozinovic S, Reining A et al (2015) Multiple conformational states of riboswitches fine-tune gene regulation. Curr Opin Struct Biol 30:112–124

    Article  PubMed  CAS  Google Scholar 

  • Gan W, Guan Z, Liu J et al (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25(19):2041–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerganova V, Berger M, Zaldastanishvili E et al (2015) Chromosomal position shift of a regulatory gene alters the bacterial phenotype. Nucleic Acids Res 43(17):8215–8226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    Article  CAS  PubMed  Google Scholar 

  • Gourse RL, Ross W, Rutherford ST (2006) General pathway for turning on promoters transcribed by RNA polymerases containing alternative sigma factors. J Bacteriol 188(13):4589–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan S, Amster-Choder O (2016) Where are things inside a bacterial cell? Curr Opin Microbiol 33:83–90

    Article  CAS  PubMed  Google Scholar 

  • Grainger DC, Hurd D, Harrison M et al (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 102(49):17693–17698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  CAS  PubMed  Google Scholar 

  • Grylak-Mielnicka A, Bidnenko V, Bardowski J et al (2016) Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. Microbiology 162(3):433–447

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Preciado A, Henkin TM, Grundy FJ et al (2009) Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 73(1):36–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider F, Lithgow JK, Stapleton MR et al (2008) DNA recognition by the Salmonella enterica serovar Typhimurium transcription factor SlyA. Int Microbiol 11(4):245–250

    CAS  PubMed  Google Scholar 

  • Harinarayanan R, Gowrishankar J (2003) Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J Mol Biol 332(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Haugen SP, Ross W, Gourse RL (2008) Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 6(7):507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hébrard M, Kröger C, Srikumar S et al (2012) sRNAs and the virulence of Salmonella enterica serovar Typhimurium. RNA Biol 9(4):437–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helmann JD (1999) Anti-sigma factors. Curr Opin Microbiol 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160(9):667–676

    Article  CAS  PubMed  Google Scholar 

  • Hernday AD, Braaten BA, Low DA (2003) The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol Cell 12(4):947–957

    Article  CAS  PubMed  Google Scholar 

  • Herrmann R, Reiner B (1998) Mycoplasma pneumonia and Mycoplasma genitalium: a comparison of two closely related bacterial species. Curr Opin Microbiol 1:572–579

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Dorman CJ, Stirling DA et al (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52(4):569–584

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LS, Rouvière-Yaniv J, Drlica K (1991) Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol 173(12):3914–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isalan M, Lemerle C, Michalodimitrakis K et al (2008) Evolvability and hierarchy in rewired bacterial gene networks. Nature 452(7189):840–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2003) Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Janga SC, Salgado H, Martinez-Antonio A (2009) Transcriptional regulation shapes the organization of genes on bacterial chromosomes. Nucleic Acids Res 37:3680–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong KS, Ahn J, Khodursky AB (2004) Spatial patterns of transcription activity in the chromosome of Escherichia coli. Genome Biol 5:R86

    Article  PubMed  PubMed Central  Google Scholar 

  • Junier I, Rivoire O (2016) Conserved units of co-expression in bacterial genomes: an evolutionary insight into transcriptional regulation. PLoS One 11:e0155740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Junier I, Hérison J, Képès F (2012) Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. J Mol Biol 419(5):369–386

    Article  CAS  PubMed  Google Scholar 

  • Karem K, Foster JW (1993) The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 10(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Képès F (2004) Periodic transcriptional organization of the E. coli chromosome. J Mol Biol 340(5):957–964

    Article  PubMed  CAS  Google Scholar 

  • Klose KE, North AK, Stedman KM et al (1994) The major dimerization determinants of the nitrogen regulatory protein NtrC from enteric bacteria lie in its carboxy-terminal domain. J Mol Biol 241(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Kotlajich MV, Hron DR, Boudreau BA et al (2015) Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. elife 4:e04970

    Article  PubMed Central  CAS  Google Scholar 

  • Kröger C, Dillon SC, Cameron AD et al (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci USA 109(20):E1277–E1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudva R, Denks K, Kuhn P et al (2013) Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 164(6):505–534

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Dhar A, Trostel A et al (2016) Genome scale patterns of supercoiling in a bacterial chromosome. Nat Commun 7:11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan G, Tu Y (2016) Information processing in bacteria: memory, computation, and statistical physics: a key issues review. Rep Prog Phys 79(5):052601

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson CL, Swigon D, Murakami KS (2004) Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14:1):10–1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazarus LR, Travers AA (1993) The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. EMBO J 12(6):2483–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell 154(1):146–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leela JK, Syeda AH, Anupama K et al (2013) Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci USA 110(1):258–263

    Article  CAS  PubMed  Google Scholar 

  • Lithgow JK, Haider F, Roberts IS et al (2007) Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 66(3):685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84(20):7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd GS, Niu W, Tebbutt J et al (2002) Requirement for two copies of RNA polymerase alpha subunit C-terminal domain for synergistic transcription activation at complex bacterial promoters. Genes Dev 16(19):2557–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchini S, Rowley G, Goldberg MD et al (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2(8):e81

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wang M (2014) Interplay between DNA supercoiling and transcription elongation. Transcription 5(3):e28636

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma CK, Kolesnikow T, Rayner JC et al (1994) Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation. Mol Microbiol 14(5):1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Majdalani N, Cunning C, Sledjeski D et al (1998) DsrA RNA regulates translation of RpoS message by an anti-sense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 95(21):12462–12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46(3):813–826

    Article  CAS  PubMed  Google Scholar 

  • Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29(18):3094–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan MW, Lucchini S, Danino V et al (2006) The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 59(6):1831–1847

    Article  CAS  PubMed  Google Scholar 

  • Mangan MW, Lucchini S, Ó Croinin T et al (2011) Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157(4):1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Rodríguez L, García-Rodríguez FM, Molina-Sánchez MD et al (2014) Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome. RNA Biol 11(8):1061–1071

    Article  PubMed  PubMed Central  Google Scholar 

  • Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17(19):2374–2383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathelier A, Carbone A (2010) Chromosomal periodicity and positional networks of genes in Escherichia coli. Mol Syst Biol 6:366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mekler V, Kortkhonjia E, Mukhopadhyay J et al (2000) Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108(5):599–614

    Article  Google Scholar 

  • Montero Llopis P, Jackson AF, Sliusarenko O et al (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466(7302):77–81

    Article  PubMed  CAS  Google Scholar 

  • Morett E, Bork P (1998) Evolution of new protein function: recombinational enhancer Fis originated by horizontal gene transfer from the transcriptional regulator NtrC. FEBS Lett 433(1–2):108–112

    Article  CAS  PubMed  Google Scholar 

  • Musatovova O, Dhandayuthapani S, Baseman JB (2006) Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 188(8):2845–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muskhelishvili G, Travers A (2003) Transcription factor as a topological homeostat. Front Biosci 8:d279–d285

    Article  CAS  PubMed  Google Scholar 

  • Navarre WW, Porwollik S, Wang Y et al (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313(5784):236–238

    Article  CAS  PubMed  Google Scholar 

  • Naville M, Gautheret D (2009) Transcription attenuation in bacteria: theme and variations. Brief Funct Genomic Proteomic 8(6):482–492

    Article  CAS  PubMed  Google Scholar 

  • Ní Bhriain N, Dorman CJ, Higgins CF (1989) An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol 3(7):933–942

    Article  PubMed  Google Scholar 

  • Nilsson P, Uhlin BE (1991) Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE-dependent endonucleolytic processing. Mol Microbiol 5(7):1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Vanet A, Vijgenboom E et al (1990) The role of FIS in trans activation of stable RNA operons of E. coli. EMBO J 9(3):727–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura M, Yates JL, Dean D et al (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein mRNA. Proc Natl Acad Sci USA 77(12):7084–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novikova O, Topilina N, Belfort M (2014) Enigmatic distribution, evolution, and function of inteins. J Biol Chem 289(21):14490–14497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nudler E (2012) RNA polymerase backtracking in gene regulation and genome instability. Cell 149(7):1438–1445

    Article  CAS  PubMed  Google Scholar 

  • Nudler E, Gottesman ME (2002) Transcription termination and anti-termination in E. coli. Genes Cells 7(8):755–768

    Article  CAS  PubMed  Google Scholar 

  • Nyström T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54(4):855–862

    Article  PubMed  CAS  Google Scholar 

  • O’Byrne CP, Dorman CJ (1994) The spv virulence operon of Salmonella typhimurium LT2 is regulated negatively by the cyclic AMP (cAMP)-cAMP receptor protein system. J Bacteriol 176(3):905–912

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Byrne CP, Ní Bhriain N, Dorman CJ (1992) The DNA supercoiling-sensitive expression of the Salmonella typhimurium his operon requires the his attenuator and is modulated by anaerobiosis and by osmolarity. Mol Microbiol 6(17):2467–2476

    Article  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Oliver P, Peralta-Gil M, Tabche ML et al (2016) Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. BMC Genomics 17:686. https://doi.org/10.1186/s12864-016-3025-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima T, Ishikawa S, Kurokawa K et al (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13(4):141–153

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Ostberg Y, Johansson J et al (2010) Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites. Genes Dev 24(13):1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen AG, Jensen LJ, Brunak S et al (2000) A DNA structural atlas for Escherichia coli. J Mol Biol 299(4):907–930

    Article  CAS  PubMed  Google Scholar 

  • Perez JC, Groisman EA (2009a) Evolution of transcriptional regulatory circuits in bacteria. Cell 138(2):233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez JC, Groisman EA (2009b) Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proc Natl Acad Sci USA 106(11):4319–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez JC, Latifi T, Groisman EA (2008) Overcoming H-NS-mediated transcriptional silencing of horizontally acquired genes by the PhoP and SlyA proteins in Salmonella enterica. J Biol Chem 283(16):10773–10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson SN, Reich NO (2010) LRP: a nucleoid-associated protein with gene regulatory properties. In: Dame RT, Dorman CJ (eds) Bacterial chromatin. Springer, Dordrecht, pp 353–364

    Chapter  Google Scholar 

  • Peterson SN, Dahlquist FD, Reich NO (2007) The role of high affinity non-specific DNA binding by Lrp in transcriptional regulation and DNA organization. J Mol Biol 369(5):1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2008) Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol 9:R4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price MN, Wetmore KM, Deutschbauer AM et al (2016) A comparison of the costs and benefits of bacterial gene expression. PLoS One 11(10):e0164314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puente JL, Verdugo-Rodríguez A, Calva E (1991) Expression of Salmonella typhi and Escherichia coli OmpC is influenced differently by medium osmolarity; dependence on Escherichia coli OmpR. Mol Microbiol 5(5):1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Quinn HJ, Cameron AD, Dorman CJ (2014) Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of Salmonella typhimurium and Escherichia coli in the acid stress response. PLoS Genet 10(3):e1004215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajkowitsch L, Schroeder R (2007) Dissecting RNA chaperone activity. RNA 13(12):2053–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JP (1982) Activation of Rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid binding sites. J Biol Chem 257(10):5760–5766

    CAS  PubMed  Google Scholar 

  • Roh K, Safaei FR, Hespanha JP, Proulx SR (2013) Evolution of transcription networks in response to temporal fluctuations. Evolution 67(4):1091–1104

    Article  CAS  PubMed  Google Scholar 

  • Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B (2009) The role of DNA shape in protein-DNA recognition. Nature 461(7268):1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross W, Gourse RL (2009) Analysis of RNA polymerase-promoter complex formation. Methods 47(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Ross W, Thompson JF, Newlands JT et al (1990) E. coli FIS protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9(11):3733–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross W, Gosink KK, Salomon J et al (1993) A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262(5138):1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Gowrishankar J (2011) Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: spectrum of termination efficiencies generated by perturbations of Rho, NusG, and H-NS family proteins. J Bacteriol 193(15):3842–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    Article  CAS  PubMed  Google Scholar 

  • Schellhorn HE (2014) Elucidating the function of the RpoS regulon. Future Microbiol 9(4):497–507

    Article  CAS  PubMed  Google Scholar 

  • Schneewind O, Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochim Biophys Acta 1843(8):1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Sedlyarova N, Shamovsky I, Bharati BK et al (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167(1):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan BJ, Dorman CJ (1988) In vivo analysis of the interactions of the LysR-like regulator SpvR with the operator sequences of the spvA and spvR virulence genes of Salmonella typhimurium. Mol Microbiol 30(1):91–105

    Article  Google Scholar 

  • Singh SS, Singh N, Bonocora RP et al (2014) Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev 28(3):214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skordalakes E, Berger JM (2003) Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114(1):135–146

    Article  CAS  PubMed  Google Scholar 

  • Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R (2014) Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 39(9):381–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snoep JL, van der Weijden CC, Andersen HW et al (2002) DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur J Biochem 269(6):1662–1669

    Article  CAS  PubMed  Google Scholar 

  • Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci USA 109(2):E42–E50

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA (2009) The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol 19(6):683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stincone A, Daudi N, Rahman AS et al (2011) A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 39(17):7512–7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoebel DM, Free A, Dorman CJ (2008) Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154(9):2533–2545

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    Article  CAS  PubMed  Google Scholar 

  • Tapias A, Lopez G, Ayora S (2000) Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res 28(2):552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3(9):711–721

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Muskhelishvili G (2005) DNA supercoiling – a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 3(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Trentini DB, Suskiewicz MJ, Heuck A et al (2016) Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539(7627):48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Workum M, van Dooren SJ, Oldenburg N et al (1996) DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 20(2):351–360

    Article  PubMed  Google Scholar 

  • Verstraeten N, Knapen W, Fauvart M et al (2016) A historical perspective on bacterial persistence. Methods Mol Biol 1333:3–13

    Article  CAS  PubMed  Google Scholar 

  • Vinograd J, Lebowitz J, Radloff R et al (1965) The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci USA 53(5):1104–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner EG, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208

    PubMed  Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742

    Article  CAS  PubMed  Google Scholar 

  • Waldron DE, Owen P, Dorman CJ (2002) Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44(2):509–520

    Article  CAS  PubMed  Google Scholar 

  • Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7(11):822–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Guo C, Gu L et al (2014) Comparative study of the marR genes within the family Enterobacteriaceae. J Microbiol 52(6):452–459

    Article  PubMed  Google Scholar 

  • Weiss V, Kramer G, Dünnebier T et al (2002) Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli. J Mol Microbiol Biotechnol 4(3):229–233

    CAS  PubMed  Google Scholar 

  • Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9(2):85–98

    Article  CAS  PubMed  Google Scholar 

  • Wimberly H, Shee C, Thornton PC et al (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 4:2115

    Article  PubMed  CAS  Google Scholar 

  • Wright MA, Kharchenko P, Church GM, Segrè D (2007) Chromosomal periodicity of evolutionarily conserved gene pairs. Proc Natl Acad Sci USA 104(25):10559–10564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HY, Shyy SH, Wang JC et al (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53(3):433–440

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Tan J, Fang M (1995) Long-range interaction between two promoters: activation of the leu-500 promoter by a distant upstream promoter. Cell 82(3):445–451

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky C, Platt T, Crawford IP et al (1981) The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res 9(24):6647–6668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenkin N (2014) Ancient RNA stems that terminate transcription. RNA Biol 11(4):295–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Baseman JB (2014) Functional characterization of osmotically inducible protein C (MG_427) from Mycoplasma genitalium. J Bacteriol 196(5):1012–1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Schleif R (1998) Catabolite gene activator protein mutations affecting activity of the araBAD promoter. J Bacteriol 180(2):195–200

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank AP Dorman for useful comments on the manuscript. This work was supported by Science Foundation Ireland Principal Investigator Award 13/IA/1875 to CJD. MJD is supported by the Wellcome Trust (grant 206194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Dorman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorman, C.J., Bhriain, N.N., Dorman, M.J. (2018). The Evolution of Gene Regulatory Mechanisms in Bacteria. In: Rampelotto, P. (eds) Molecular Mechanisms of Microbial Evolution. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69078-0_6

Download citation

Publish with us

Policies and ethics