Skip to main content

The Relevance and Challenges of Studying Microbial Evolution

  • Chapter
  • First Online:
Molecular Mechanisms of Microbial Evolution

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB))

Abstract

The evolution of microbes had been underway for about 3 billion years, covering much of the earlier evolutionary history of life. Many of the genes, molecular machines, regulatory, metabolic, and synthetic pathways found in all living organisms today evolved first in microorganisms. Even now, most of the biodiversity of life on Earth is microbial. The great diversity of microbes allows them to synthesize or break down a vast range of chemical substrates and govern biogeochemical cycles that make Earth a habitable planet. As such, microbes are essential to Earth’s functioning at every scale, and understanding them is essential for a complete understanding of life. As a brief introduction to this book, herein I highlight some of the reasons why understanding how microbes evolve is important to science and society and how challenging is to study microbial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J, Rosenzweig F (2014) Experimental microbial evolution: history and conceptual underpinnings. Genomics 104(6 Pt A):393–398

    Article  CAS  Google Scholar 

  • Alegado RA, King N (2014) Bacterial influences on animal origins. Cold Spring Harb Perspect Biol 6(11):a016162

    Article  Google Scholar 

  • Alkım C, Turanlı-Yıldız B, Cakar ZP (2014) Evolutionary engineering of yeast. Methods Mol Biol 1152:169–183

    Article  Google Scholar 

  • Arora T, Bäckhed F (2016) The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 280(4):339–349

    Article  CAS  Google Scholar 

  • Bakermans C (2015) Microbial evolution under extreme conditions. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814

    Article  CAS  Google Scholar 

  • Bentley SD, Parkhill J (2015) Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 282(1821):20150488

    Article  Google Scholar 

  • Bosch TCG, Miller DJ (2016) The holobiont imperative: perspectives from early emerging animals. Springer, London

    Book  Google Scholar 

  • Britton T, House T, Lloyd AL, Mollison D, Riley S, Trapman P (2015) Five challenges for stochastic epidemic models involving global transmission. Epidemics 10:54–57

    Article  Google Scholar 

  • Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2):171–182

    Article  CAS  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469

    Article  CAS  Google Scholar 

  • EPA (2018) Inventory of U.S. greenhouse gas. Emissions and sinks: 1990–2016. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Foster JA, Lyte M, Meyer E, Cryan JF (2016) Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol 19(5):pyv114

    Article  Google Scholar 

  • Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400

    Article  CAS  Google Scholar 

  • Goodman B, Gardner H (2018) The microbiome and cancer. J Pathol 244(5):667–676

    Article  Google Scholar 

  • Hamilton TL, Bryant DA, Macalady JL (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 18(2):325–340

    Article  CAS  Google Scholar 

  • Jackson RW, Johnson LJ, Clarke SR, Arnold DL (2012) Bacterial pathogen evolution: breaking news. Trends Genet 27(1):32–40

    Article  Google Scholar 

  • Kashyap PC, Chia N, Nelson H, Segal E, Elinav E (2017) Microbiome at the frontier of personalized medicine. Mayo Clin Proc 92(12):1855–1864

    Article  Google Scholar 

  • Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2:119

    Article  Google Scholar 

  • Ladau J, Shi Y, Jing X, He J-S, Chen L, Lin X, Fierer N, Gilbert JA, Pollard KS, Chu H (2018) Climate change will lead to pronounced shifts in the diversity of soil microbial communities. bioRxiv 180174. https://doi.org/10.1101/180174

  • Lloyd-Smith JO, Funk S, McLean AR, Riley S, Wood JL (2015) Nine challenges in modelling the emergence of novel pathogens. Epidemics 10:35–39

    Article  Google Scholar 

  • Long PE, Williams KH, Hubbard SS, Banfield JF (2016) Microbial metagenomics reveals climate-relevant subsurface biogeochemical processes. Trends Microbiol 24(8):600–610

    Article  CAS  Google Scholar 

  • MartĂ­nez JL (2013) Bacterial pathogens: from natural ecosystems to human hosts. Environ Microbiol 15(2):325–333

    Article  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TC et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236

    Article  CAS  Google Scholar 

  • Nazaries L, Pan Y, Bodrossy L, Baggs EM, Millard P, Murrell JC, Singh BK (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79(13):4031–4040

    Article  CAS  Google Scholar 

  • Nuccio SP, Bäumler AJ (2015) Reconstructing pathogen evolution from the ruins. Proc Natl Acad Sci USA 112(3):647–648

    Article  CAS  Google Scholar 

  • O’Malley MA (2018) The experimental study of bacterial evolution and its implications for the modern synthesis of evolutionary biology. J Hist Biol 51(2):319–354. https://doi.org/10.1007/s10739-017-9493-8

    Article  PubMed  Google Scholar 

  • Paun A, Yau C, Danska JS (2017) The influence of the microbiome on type 1 diabetes. J Immunol 198(2):590–595

    Article  CAS  Google Scholar 

  • Petrosino JF (2018) The microbiome in precision medicine: the way forward. Genome Med 10(1):12

    Article  Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2(6):1602–1623

    Article  CAS  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life 3(3):482–485

    Article  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7(2):e01395

    Article  CAS  Google Scholar 

  • Rothman DH, Fournier GP, French KL, Alm EJ, Boyle EA, Cao C, Summons RE (2014) Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA 111(15):5462–5467

    Article  CAS  Google Scholar 

  • Rousk J, BĂ¥Ă¥th E (2011) Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol 78:17–30

    Article  CAS  Google Scholar 

  • Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol 5:103

    Article  Google Scholar 

  • Sahney S, Benton MJ (2008) Recovery from the most profound mass extinction of all time. Proc R Soc Lond B 275(1636):759–765

    Article  Google Scholar 

  • Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA 110(5):1791–1796

    Article  CAS  Google Scholar 

  • Schirrmeister BE, Gugger M, Donoghue PC (2015) Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58(5):769–785

    Article  Google Scholar 

  • Schuur EA, McGuire AD, Schädel C et al (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790

    Article  CAS  Google Scholar 

  • Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355(6332):1436–1440

    Article  CAS  Google Scholar 

  • Szukics U, Abell GCJ, Hödl V et al (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72:395–406

    Article  CAS  Google Scholar 

  • Tian H, Lu C, Ciais P et al (2016) The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531(7593):225–228

    Article  CAS  Google Scholar 

  • Tibayrenc M (2017) Genetics and evolution of infectious diseases. Elsevier, London

    Google Scholar 

  • Treseder KK, Balser TC, Bradford MA et al (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109(1–3):7–18

    Article  CAS  Google Scholar 

  • Vuong HE, Yano JM, Fung TC, Hsiao EY (2017) The microbiome and host behavior. Annu Rev Neurosci 40:21–49

    Article  CAS  Google Scholar 

  • Ward CP, Nalven SG, Crump BC, Kling GW, Cory RM (2017) Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat Commun 8(1):772

    Article  Google Scholar 

  • Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104(6 Pt A):406–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabulo Henrique Rampelotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rampelotto, P.H. (2018). The Relevance and Challenges of Studying Microbial Evolution. In: Rampelotto, P. (eds) Molecular Mechanisms of Microbial Evolution. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69078-0_1

Download citation

Publish with us

Policies and ethics