Anaerobic Digestion and Gasification of Seaweed

Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, with over 70 years of sometimes intensive research and considerable financial investment. A wide range of unit operations can be combined to produce algal biofuel, but as yet there is no successful commercial system producing such biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economically viable algal biofuel production can be achieved. Both gasification and anaerobic digestion have been suggested as promising methods for exploiting bioenergy from biomass, and two major projects have been funded in the UK on the gasification and anaerobic digestion of seaweed, MacroBioCrude and SeaGas. This chapter discusses the use of gasification and anaerobic digestion of seaweed for the production of biofuel.

Notes

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) project number EP/K014900/1 (MacroBioCrude: Developing an Integrated Supply and Processing Pipeline for the Sustained Production of Ensiled Macroalgae-derived Hydrocarbon Fuels.

References

  1. 1.
    Milledge JJ, Harvey PJ (2016) Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biotechnol 91:2221–2234.  https://doi.org/10.1002/jctb.5003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Smit A (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262.  https://doi.org/10.1023/B:JAPH.0000047783.36600.ef CrossRefGoogle Scholar
  3. 3.
    Yeong HY, Phang SM, Reddy CRK, Khalid N (2014) Production of clonal planting materials from Gracilaria changii and Kappaphycus alvarezii through tissue culture and culture of G-changii explants in airlift photobioreactors. J Appl Phycol 26:729–746.  https://doi.org/10.1007/s10811-013-0122-4 CrossRefGoogle Scholar
  4. 4.
    FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, RomeGoogle Scholar
  5. 5.
    Research and Markets (2016) Commercial seaweeds market by type (red, Brown, green), form (liquid, powdered, flakes), application (agriculture, animal feed, human food, and others), and by region – global forecasts to 2021, DublinGoogle Scholar
  6. 6.
    Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46.  https://doi.org/10.1007/s11027-010-9275-5 CrossRefGoogle Scholar
  7. 7.
    Kelly MS, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production a feasibility study with recommendations for further research. The Crown Estate on behalf of the Marine Estate, ScotlandGoogle Scholar
  8. 8.
    Roesijadi G, Copping AE, Huesemann MH, Foster J, Benemann JR (2010) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. US Department of EnergyGoogle Scholar
  9. 9.
    Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev 47:427–437.  https://doi.org/10.1016/j.rser.2015.03.086 CrossRefGoogle Scholar
  10. 10.
    Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, BerkeleyGoogle Scholar
  11. 11.
    Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504.  https://doi.org/10.1016/j.biortech.2007.11.036 CrossRefPubMedGoogle Scholar
  12. 12.
    Marquez GPB, Santianez WJE, Trono GC, Montano MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sust Energ Rev 38:1056–1068.  https://doi.org/10.1016/j.rser.2014.07.056 CrossRefGoogle Scholar
  13. 13.
    Milledge JJ, Heaven S (2014) Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol 13:301–320.  https://doi.org/10.1007/s11157-014-9339-1 CrossRefGoogle Scholar
  14. 14.
    Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Ind Biotechnol 10:169–183CrossRefGoogle Scholar
  15. 15.
    Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: a brief review. Bioresources 9:1606–1633Google Scholar
  16. 16.
    Chen H, Qiu T, Rong J, He C, Wang Q (2015) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy 155:585–598.  https://doi.org/10.1016/j.apenergy.2015.06.055 CrossRefGoogle Scholar
  17. 17.
    Kerrison PD, Stanley MS, Edwards MD, Black KD, Hughes AD (2015) The cultivation of European kelp for bioenergy: site and species selection. Biomass Bioenergy 80:229–242.  https://doi.org/10.1016/j.biombioe.2015.04.035 CrossRefGoogle Scholar
  18. 18.
    European Commission (2014) Eurostat handbook for annual crop statistics. Eurostat, LuxembourgGoogle Scholar
  19. 19.
    McLaren J (2009) Sugarcane as a feedstock for biofuels: an analytical white paper. National Corn Growers Association, Chesterfield, MOGoogle Scholar
  20. 20.
    Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061.  https://doi.org/10.1021/ef100151h CrossRefGoogle Scholar
  21. 21.
    Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol 102:4876–4883.  https://doi.org/10.1016/j.biortech.2011.01.031 CrossRefPubMedGoogle Scholar
  22. 22.
    IFRF. International Flame Research Foundation (2004) Online combustion handbook. Method from Combustion File 24Google Scholar
  23. 23.
    Heaven S, Milledge J, Zhang Y (2011) Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29:164–167.  https://doi.org/10.1016/j.biotechadv.2010.10.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40R.  https://doi.org/10.1093/glycob/cwg058 CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2014) Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68:203–209.  https://doi.org/10.2478/s11696-013-0430-9 CrossRefGoogle Scholar
  26. 26.
    Milledge JJ, Harvey PJ (2016) Ensilage and anaerobic digestion of Sargassum muticum. J Appl Phycol 28:3021–3030.  https://doi.org/10.1007/s10811-016-0804-9 CrossRefGoogle Scholar
  27. 27.
    Valderrama D, Cai J, Hishamunda N, Ridler N (2014) Social and economic dimensions of carrageenan seaweed farming. FAO, RomeGoogle Scholar
  28. 28.
    Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86:1679–1693CrossRefGoogle Scholar
  29. 29.
    Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energ Build 68:121–129.  https://doi.org/10.1016/j.enbuild.2013.07.072 CrossRefGoogle Scholar
  30. 30.
    Brennan L, Owende P (2010) Biofuels from microalgae--a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577.  https://doi.org/10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  31. 31.
    Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University press, CambridgeGoogle Scholar
  32. 32.
    Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, DublinGoogle Scholar
  33. 33.
    Gallagher JA, Turner LB, Adams JMM, Dyer PW, Theodorou MK (2017) Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)). Bioresour Technol 224:662–669.  https://doi.org/10.1016/j.biortech.2016.11.091 CrossRefPubMedGoogle Scholar
  34. 34.
    Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378.  https://doi.org/10.1016/s0196-8904(00)00137-0 CrossRefGoogle Scholar
  35. 35.
    Wang S, Jiang XM, Wang Q, Han XX, Ji HS (2013) Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed. Energy Convers Manag 66:115–120.  https://doi.org/10.1016/j.enconman.2012.10.006 CrossRefGoogle Scholar
  36. 36.
    Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ (2008) Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim 93:611–617.  https://doi.org/10.1007/s10973-007-8274-6 CrossRefGoogle Scholar
  37. 37.
    Milledge JJ, Smith B, Dyer P, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222CrossRefGoogle Scholar
  38. 38.
    Smith AM, Ross AB (2016) Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res 16:1–11.  https://doi.org/10.1016/j.algal.2016.02.026 CrossRefGoogle Scholar
  39. 39.
    Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148.  https://doi.org/10.1016/j.rser.2013.06.029 CrossRefGoogle Scholar
  40. 40.
    Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46.  https://doi.org/10.1016/j.apenergy.2009.06.016 CrossRefGoogle Scholar
  41. 41.
    Lenstra WJ, Hal JWV, Reith JH (2011) Economic aspects of open ocean seaweed cultivation. Paper presented at the Alg’n Chem 2011. Algae, new resources for industry, MontpellierGoogle Scholar
  42. 42.
    Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland—an approach to 2020 targets with a focus on algal biomass. Energies 6:6391–6412CrossRefGoogle Scholar
  43. 43.
    Streefland M (2010) Report on biofuel production processes from micro, macroalgae and other aquatic biomass. AquaFUELs, BrusselsGoogle Scholar
  44. 44.
    van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437.  https://doi.org/10.1016/j.biortech.2012.10.094 CrossRefPubMedGoogle Scholar
  45. 45.
    Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945.  https://doi.org/10.1002/jctb.4918 CrossRefGoogle Scholar
  46. 46.
    Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165.  https://doi.org/10.1016/j.biortech.2010.07.017 CrossRefPubMedGoogle Scholar
  47. 47.
    Walker DA (2010) Biofuels – for better or worse? Ann Appl Biol 156:319–327.  https://doi.org/10.1111/j.1744-7348.2010.00404.x CrossRefGoogle Scholar
  48. 48.
    Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190.  https://doi.org/10.1016/j.biortech.2012.10.025 CrossRefPubMedGoogle Scholar
  49. 49.
    Tiwari B, Troy D (eds) (2015) Seaweed sustainability: food and non-food applications, 1st edn. Academic Press, AmsterdamGoogle Scholar
  50. 50.
    Kawai S, Murata K (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci 17:145CrossRefGoogle Scholar
  51. 51.
    Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235.  https://doi.org/10.4161/bioe.23396 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wargacki AJ et al (2012) An engineered microbial platform for direct biofuel production from Brown macroalgae. Science 335:308–313.  https://doi.org/10.1126/science.1214547 CrossRefPubMedGoogle Scholar
  53. 53.
    Badur AH, Jagtap SS, Yalamanchili G, Lee J-K, Zhao H, Rao CV (2015) Alginate Lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol 81:1865–1873.  https://doi.org/10.1128/aem.03460-14 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Huesemann M, Roesjadi G, Benemann J, Metting FB (2010) Biofuels from microalgae and seaweeds. In: Biomass to biofuels. Blackwell, Oxford, pp 165–184.  https://doi.org/10.1002/9780470750025.ch8 CrossRefGoogle Scholar
  55. 55.
    Aizawa M, Asaoka K, Atsumi M, Sakou T (2007) Seaweed bioethanol production in Japan – The Ocean Sunrise Project. OCEANS, IEEE, Vancouver, Canada, pp 1–5.  https://doi.org/10.1109/OCEANS.2007.4449162
  56. 56.
    Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254.  https://doi.org/10.1038/sj.jim.7000065 CrossRefGoogle Scholar
  57. 57.
    Parliamentary Office of Science & Technology (2011) Biofuels from algae, vol 384. PostnoteGoogle Scholar
  58. 58.
    Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energy 31:29–36.  https://doi.org/10.1002/ep.10606 CrossRefGoogle Scholar
  59. 59.
    Huesemann MH, Kuo LJ, Urquhart L, Gill GA, Roesijadi G (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour Technol 108:305–309.  https://doi.org/10.1016/j.biortech.2011.12.148 CrossRefPubMedGoogle Scholar
  60. 60.
    McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54.  https://doi.org/10.1016/s0960-8524(01)00119-5 CrossRefPubMedGoogle Scholar
  61. 61.
    Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuel 26:658–671.  https://doi.org/10.1021/ef201417e CrossRefGoogle Scholar
  62. 62.
    Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuel 24:3639–3646.  https://doi.org/10.1021/ef100203u CrossRefGoogle Scholar
  63. 63.
    Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella-tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738.  https://doi.org/10.1016/0016-2361(95)80001-x CrossRefGoogle Scholar
  64. 64.
    Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39.  https://doi.org/10.1016/s0961-9534(99)00019-7 CrossRefGoogle Scholar
  65. 65.
    Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187.  https://doi.org/10.1016/j.biortech.2012.01.008 CrossRefPubMedGoogle Scholar
  66. 66.
    Lee A, Lewis D, Kalaitzidis T, Ashman P (2016) Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude. Curr Opin Biotechnol 38:85–89.  https://doi.org/10.1016/j.copbio.2016.01.004 CrossRefPubMedGoogle Scholar
  67. 67.
    Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sust Energ Rev 27:11–19.  https://doi.org/10.1016/j.rser.2013.06.032 CrossRefGoogle Scholar
  68. 68.
    Singh J, Gu S (2010) Biomass conversion to energy in India-a critique. Renew Sust Energ Rev 14:1367–1378.  https://doi.org/10.1016/j.rser.2010.01.013 CrossRefGoogle Scholar
  69. 69.
    Ventura J-RS, Yang B, Lee Y-W, Lee K, Jahng D (2013) Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour Technol 137:302–310.  https://doi.org/10.1016/j.biortech.2013.02.104 CrossRefPubMedGoogle Scholar
  70. 70.
    Delrue F, Seiter PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200.  https://doi.org/10.1016/j.biortech.2012.02.020 CrossRefPubMedGoogle Scholar
  71. 71.
    McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63.  https://doi.org/10.1016/S0960-8524(01)00120-1 CrossRefPubMedGoogle Scholar
  72. 72.
    Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289.  https://doi.org/10.1016/j.rser.2011.02.015 CrossRefGoogle Scholar
  73. 73.
    Ahmed II, Gupta AK (2010) Pyrolysis and gasification of food waste: syngas characteristics and char gasification kinetics. Appl Energy 87:101–108.  https://doi.org/10.1016/j.apenergy.2009.08.032 CrossRefGoogle Scholar
  74. 74.
    Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941.  https://doi.org/10.1016/j.rser.2015.11.026 CrossRefGoogle Scholar
  75. 75.
    Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241.  https://doi.org/10.1016/s0920-5861(01)00453-9 CrossRefGoogle Scholar
  76. 76.
    International Renewable Energy Agency IRENA (2013) Production of bio-methanol -technology brief. Abu Dhabi, United Arab EmiratesGoogle Scholar
  77. 77.
    Hayashi J-I, Kudo S, Kim H-S, Norinaga K, Matsuoka K, Hosokai S (2013) Low-temperature gasification of biomass and lignite: consideration of key thermochemical phenomena, rearrangement of reactions, and reactor configuration. Energy Fuel 28:4–21.  https://doi.org/10.1021/ef401617k CrossRefGoogle Scholar
  78. 78.
    Anex RP et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89(Suppl 1):S29–S35.  https://doi.org/10.1016/j.fuel.2010.07.015 CrossRefGoogle Scholar
  79. 79.
    Guan QQ, Savage PE, Wei CH (2012) Gasification of alga Nannochloropsis sp in supercritical water. J Supercrit Fluids 61:139–145.  https://doi.org/10.1016/j.supflu.2011.09.007 CrossRefGoogle Scholar
  80. 80.
    Aziz M, Oda T, Kashiwagi T (2014) Advanced energy harvesting from macroalgae-innovative integration of drying, gasification and combined cycle. Energies 7:8217–8235.  https://doi.org/10.3390/en7128217 CrossRefGoogle Scholar
  81. 81.
    Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18.  https://doi.org/10.1111/pre.12078 CrossRefGoogle Scholar
  82. 82.
    Guan QQ, Wei CH, Savage PE (2012) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14:3140–3147.  https://doi.org/10.1039/c2cp23792j CrossRefPubMedGoogle Scholar
  83. 83.
    Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environ Sci Technol 48:6492–6499.  https://doi.org/10.1021/es500474q CrossRefPubMedGoogle Scholar
  84. 84.
    Nikolaison L et al (2012) Energy production fom macroalgae. Paper presented at the 20th European biomass conference, MilanGoogle Scholar
  85. 85.
    Cherad R, Onwudili JA, Ekpo U, Williams PT, Lea-Langton AR, Carmargo-Valero M, Ross AB (2013) Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation. Environ Prog Sustain Energy 32:902–909CrossRefGoogle Scholar
  86. 86.
    Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80.  https://doi.org/10.1016/j.biortech.2012.10.020 CrossRefPubMedGoogle Scholar
  87. 87.
    Kwon EE, Jeon YJ, Yi H (2012) New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresour Technol 123:673–677.  https://doi.org/10.1016/j.biortech.2012.07.035 CrossRefPubMedGoogle Scholar
  88. 88.
    Ross AB, Anastasakis K, Kubacki M, Jones JM (2009) Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85:3–10.  https://doi.org/10.1016/j.jaap.2008.11.004 CrossRefGoogle Scholar
  89. 89.
    Kaewpanha M, Guan G, Hao X, Wang Z, Kasai Y, Kusakabe K, Abudula A (2014) Steam co-gasification of brown seaweed and land-based biomass. Fuel Process Technol 120:106–112.  https://doi.org/10.1016/j.fuproc.2013.12.013 CrossRefGoogle Scholar
  90. 90.
    Rizkiana J, Guan GQ, Widayatno WB, Hao XG, Huang W, Tsutsumi A, Abudula A (2014) Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel 134:414–419.  https://doi.org/10.1016/j.fuel.2014.06.008 CrossRefGoogle Scholar
  91. 91.
    Rowbotham JS, Dyer PW, Greenwell HC, Selby D, Theodorou MK (2013) Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. Interface Focus 3:20120046.  https://doi.org/10.1098/rsfs.2012.0046 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Peu P, Sassi JF, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour Technol 102:10794–10802.  https://doi.org/10.1016/j.biortech.2011.08.096 CrossRefPubMedGoogle Scholar
  93. 93.
    Vanegas CH, Bartlett J (2013) Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environ Technol 34:2277–2283.  https://doi.org/10.1080/09593330.2013.765922 CrossRefPubMedGoogle Scholar
  94. 94.
    Ali Shah F, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:183752.  https://doi.org/10.1155/2014/183752 CrossRefGoogle Scholar
  95. 95.
    McKennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sust Energ Rev 52:1781–1790.  https://doi.org/10.1016/j.rser.2015.07.101 CrossRefGoogle Scholar
  96. 96.
    Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951.  https://doi.org/10.1016/j.biotechadv.2014.04.007 CrossRefPubMedGoogle Scholar
  97. 97.
    Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860.  https://doi.org/10.1007/s00253-009-2246-7 CrossRefPubMedGoogle Scholar
  98. 98.
    Barbot Y, Al-Ghaili H, Benz R (2016) A review on the valorization of macroalgal wastes for biomethane production. Mar Drugs 14:120CrossRefGoogle Scholar
  99. 99.
    Sutherland A, Varela J (2014) Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. BMC Biotechnol 14:7CrossRefGoogle Scholar
  100. 100.
    Lewis J, Salam F, Slack N, Winton M, Hobson L (2011) Product options for the processing of marine macro-algae – summary report. The Crown EstatesGoogle Scholar
  101. 101.
    Florentinus A, Harmelinck C, Lint SD, Iersel SV (2008) Worldwide potential of aquatic biomass. Ecofys, UtrechtGoogle Scholar
  102. 102.
    Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. U.S. Department of Energy, WashingtonCrossRefGoogle Scholar
  103. 103.
    Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218.  https://doi.org/10.1002/bbb.337 CrossRefGoogle Scholar
  104. 104.
    Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42.  https://doi.org/10.1016/j.biortech.2010.06.158 CrossRefPubMedGoogle Scholar
  105. 105.
    Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5:677–682.  https://doi.org/10.1007/bf01386361 CrossRefGoogle Scholar
  106. 106.
    Park S, Li YB (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48.  https://doi.org/10.1016/j.biortech.2012.01.160 CrossRefPubMedGoogle Scholar
  107. 107.
    Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158.  https://doi.org/10.1016/j.biortech.2010.09.017 CrossRefPubMedGoogle Scholar
  108. 108.
    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552.  https://doi.org/10.1021/ie50507a033 CrossRefGoogle Scholar
  109. 109.
    Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates. J Am Chem Soc 55:2028–2036.  https://doi.org/10.1021/ja01332a039 CrossRefGoogle Scholar
  110. 110.
    Passos F, Gutiérrez R, Brockmann D, Steyer J-P, García J, Ferrer I (2015) Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res 10:55–63.  https://doi.org/10.1016/j.algal.2015.04.008 CrossRefGoogle Scholar
  111. 111.
    Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55PubMedPubMedCentralGoogle Scholar
  112. 112.
    Bruhn A et al (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604.  https://doi.org/10.1016/j.biortech.2010.10.010 CrossRefPubMedGoogle Scholar
  113. 113.
    Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour Technol 129:92–99.  https://doi.org/10.1016/j.biortech.2012.11.029 CrossRefPubMedGoogle Scholar
  114. 114.
    Soto M, Vazquez MA, de Vega A, Vilarino JM, Fernandez G, de Vicente ME (2015) Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour Technol 189:53–61.  https://doi.org/10.1016/j.biortech.2015.03.074 CrossRefPubMedGoogle Scholar
  115. 115.
    Tabassum MR, Xia A, Murphy JD (2016) Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Bioresour Technol 216:219–226.  https://doi.org/10.1016/j.biortech.2016.05.071 CrossRefPubMedGoogle Scholar
  116. 116.
    Ward AJ, Lewis DM, Green B (2014) Anaerobic digestion of algae biomass: a review algal research-biomass. Biofuels Bioproducts 5:204–214.  https://doi.org/10.1016/j.algal.2014.02.001 CrossRefGoogle Scholar
  117. 117.
    Mayfield SP (2015) Consortium for algal biofuel commercialization (CAB-COMM) final reportGoogle Scholar
  118. 118.
    Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9:347–357.  https://doi.org/10.1023/a:1007988712929 CrossRefGoogle Scholar
  119. 119.
    Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597.  https://doi.org/10.1007/s10811-010-9632-5 CrossRefGoogle Scholar
  120. 120.
    Connan S, Delisle F, Deslandes E, Gall EA (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46.  https://doi.org/10.1515/bot2006.005 CrossRefGoogle Scholar
  121. 121.
    Gorham J, Lewey SA (1984) Seasonal changes in the chemical composition of Sargassum muticum. Mar Biol 80:103–107CrossRefGoogle Scholar
  122. 122.
    Tanniou A et al (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26:1215–1230.  https://doi.org/10.1007/s10811-013-0198-x CrossRefGoogle Scholar
  123. 123.
    Hierholtzer A, Chatellard L, Kierans M, Akunna JC, Collier PJ (2013) The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J Appl Microbiol 114:964–973.  https://doi.org/10.1111/jam.12114 CrossRefPubMedGoogle Scholar
  124. 124.
    Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52.  https://doi.org/10.3390/md14030052 CrossRefPubMedCentralGoogle Scholar
  125. 125.
    Mousa L, Forster CF (1999) The use of trace organics in anaerobic digestion. Process Saf Environ Prot 77:37–42.  https://doi.org/10.1205/095758299529767 CrossRefGoogle Scholar
  126. 126.
    López A, Rico M, Rivero A, Suárez de Tangil M (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109.  https://doi.org/10.1016/j.foodchem.2010.09.101 CrossRefGoogle Scholar
  127. 127.
    Hilton MG, Archer DB (1988) Anaerobic digestion of a sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production. Biotechnol Bioeng 31:885–888.  https://doi.org/10.1002/bit.260310817 CrossRefPubMedGoogle Scholar
  128. 128.
    Berglund M, Borjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30:254–266.  https://doi.org/10.1016/j.biombioe.2005.11.011 CrossRefGoogle Scholar
  129. 129.
    Petersson A, Wellinger A (2009) Biogas upgrading technologies – developments and innovations. IEA Bioenergy, CorkGoogle Scholar
  130. 130.
    Ryckebosch E, Drouillon M, Veruaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645.  https://doi.org/10.1016/j.biombioe.2011.02.033 CrossRefGoogle Scholar
  131. 131.
    Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading – technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7:499–511.  https://doi.org/10.1002/bbb.1423 CrossRefGoogle Scholar
  132. 132.
    Hierholtzer A, Akunna JC (2012) Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol 66:1565–1573.  https://doi.org/10.2166/wst.2012.345 CrossRefPubMedGoogle Scholar
  133. 133.
    Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682.  https://doi.org/10.1016/j.watres.2006.08.027 CrossRefPubMedGoogle Scholar
  134. 134.
    Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064.  https://doi.org/10.1016/j.biortech.2007.01.057 CrossRefPubMedGoogle Scholar
  135. 135.
    Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng ASCE 129:506–512.  https://doi.org/10.1061/(asce)0733-9372(2003)129:6(506) CrossRefGoogle Scholar
  136. 136.
    Ramakrishnan B, Kumaraswamy S, Mallick K, Adhya TK, Rao VR, Sethunathan N (1998) Effect of various anionic species on net methane production in flooded rice soils. World J Microbiol Biotechnol 14:743–749.  https://doi.org/10.1023/A:1008814925481 CrossRefGoogle Scholar
  137. 137.
    El-Dessouky HT, Ettouney HM (2002) Fundamentals of salt water desalination. Elsevier, AmsterdamGoogle Scholar
  138. 138.
    Adams JMM, Schmidt A, Gallagher JA (2015) The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane. J Appl Phycol 27:985–991.  https://doi.org/10.1007/s10811-014-0368-5 CrossRefGoogle Scholar
  139. 139.
    Roberts KP, Heaven S, Banks CJ (2016) Quantification of methane losses from the acclimatisation of anaerobic digestion to marine salt concentrations. Renew Energy 86:497–506.  https://doi.org/10.1016/j.renene.2015.08.045 CrossRefGoogle Scholar
  140. 140.
    Tedesco S, Barroso TM, Olabi AG (2014) Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renew Energy 62:527–534.  https://doi.org/10.1016/j.renene.2013.08.023 CrossRefGoogle Scholar
  141. 141.
    Milledge J, Heaven S (2017) Energy balance of biogas production from microalgae: effect of harvesting method, multiple raceways, scale of plant and combined heat and power generation. J Mar Sci Eng 5:9CrossRefGoogle Scholar
  142. 142.
    ter Veld F (2012) Beyond the fossil fuel era: on the feasibility of sustainable electricity generation using biogas from microalgae. Energy Fuel 26:3882–3890.  https://doi.org/10.1021/ef3004569 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Algae Biotechnology Research GroupUniversity of GreenwichKentUK

Personalised recommendations