Aplysinopsins as Promising Marine Natural Product Drug Leads: Recent Developments

  • Kevin Lewellyn
  • Jordan K. ZjawionyEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Marine natural products represent a rich source of bioactive secondary metabolites, one of which is the marine indole alkaloids aplysinopsins. Aplysinopsins were first described in 1977 from the extracts of Indo-Pacific sponge species. Since that initial description, they have been isolated from a wide range of marine sources: sponges, corals, mollusks, and sea anemones. Aplysinopsins are composed of an indole coupled with an imidazolidinone moiety. The structural variation of naturally occurring aplysinopsin analogs occurs in the bromination pattern on the indole moiety as well as the pattern of N-methylations on the imidazolidinone ring. There are multiple synthetic strategies used to access the aplysinopsin scaffold. The majority of them are convergent routes that begin with synthesis of the desired indole moiety followed by the imidazolidinone synthesis and, ultimately, coupling of the two systems via several different methodologies. Aplysinopsins possess a wide variety of biological activities, from antimicrobial and antimalarial to antitumor activity seen in mice. However, their neuromodulatory activities have generated the most recent interest in their bioactivity. Both natural and synthetic aplysinopsin analogs have been found to act on both the serotonin receptor and the monoamine oxidase system. This chapter will review recently published synthetic strategies used to construct aplysinopsin analogs. It will also highlight significant and promising biological activities displayed by aplysinopsins, with an emphasis of neuromodulatory activities.


  1. 1.
    Newman DJ, Cragg GM (2016a) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kong D-X, Jiang Y-Y, Zhang H-Y (2010) Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15:884–886. CrossRefPubMedGoogle Scholar
  4. 4.
    Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899. CrossRefGoogle Scholar
  5. 5.
    Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A (2010) Brentuximab Vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821. CrossRefPubMedGoogle Scholar
  7. 7.
    Grosso F, Jones RL, Demetri GD, Judson IR, Blay J-Y, Le Cesne A, Sanfilippo R, Casieri P, Collini P, Dileo P, Spreafico C, Stacchiotti S, Tamborini E, Tercero JC, Jimeno J, D’Incalci M, Gronchi A, Fletcher JA, Pilotti S, Casali PG (2007) Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol 8:595–602. CrossRefPubMedGoogle Scholar
  8. 8.
    Löwenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Biemond BJ, Gratwohl A, de Greef GE, Verdonck LF, Schaafsma MR, Gregor M, Theobald M, Schanz U, Maertens J, Ossenkoppele GJ (2011) Cytarabine dose for acute myeloid Leukemia. N Engl J Med 364:1027–1036. CrossRefPubMedGoogle Scholar
  9. 9.
    Twelves C, Cortes J, Vahdat LT, Wanders J, Akerele C, Kaufman PA (2010) Phase III trials of Eribulin Mesylate (E7389) in extensively Pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer 10:160–163. CrossRefPubMedGoogle Scholar
  10. 10.
    Schmidtko A, Lötsch J, Freynhagen R, Geisslinger G (2010) Ziconotide for treatment of severe chronic pain. Lancet 375:1569–1577. CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JH, O’Keefe JH, Lavie CJ, Marchioli R, Harris WS (2008) Omega-3 fatty acids for cardioprotection. Mayo Clin Proc 83:324–332. CrossRefPubMedGoogle Scholar
  12. 12.
    Shepp DH, Dandliker PS, Meyers JD (1986) Treatment of varicella-zoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. N Engl J Med 314:208–212. CrossRefPubMedGoogle Scholar
  13. 13.
    Newman DJ, Cragg GM (2016b) Drugs and drug candidates from marine sources: an assessment of the current “state of play”. Planta Med 82:775–789. CrossRefPubMedGoogle Scholar
  14. 14.
    Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431. CrossRefPubMedGoogle Scholar
  15. 15.
    Motuhi S-E, Mehiri M, Payri CE, La Barre S, Bach S (2016) Marine natural products from New Caledonia–a review. Mar Drugs 14:58. CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cole AK, Marmura MJ (2010) Triptans: where things stand. Curr Treat Options Neurol 12:454–463. CrossRefPubMedGoogle Scholar
  17. 17.
    Kazlauskas R, Murphy PT, Quinn RJ, Wells RJ (1977) Aplysinopsin, a new tryptophan derivative from a sponge. Tetrahedron Lett 18:61–64. CrossRefGoogle Scholar
  18. 18.
    Fattorusso E, Lanzotti V, Magno S, Novellino E (1985) Tryptophan derivatives from a Mediterranean anthozoan, Astroides calycularis. J Nat Prod 48:924–927. CrossRefGoogle Scholar
  19. 19.
    Okuda RK, Klein D, Kinnel RB, Li M, Scheuer PJ (1982) Marine natural products: the past twenty years and beyond. Pure Appl Chem 54:1907–1914. CrossRefGoogle Scholar
  20. 20.
    Murata M, Miyagawa-Kohshima K, Nakanishi K, Naya Y (1986) Characterization of compounds that induce symbiosis between sea anemone and anemone fish. Science 234:585–587. CrossRefPubMedGoogle Scholar
  21. 21.
    Guella G, Mancini I, Zibrowius H, Pietra F (1988) Novel Aplysinopsin-type alkaloids from scleractinian corals of the family Dendrophylliidae of the Mediterranean and the Philippines. Configurational-assignment criteria, stereospecific synthesis, and photoisomerization. Helv Chim Acta 71:773–782. CrossRefGoogle Scholar
  22. 22.
    Guella G, Mancini I, Zibrowius H, Pietra F (1989) Aplysinopsin-type alkaloids from Dendrophyllia sp., a scleractinian coral of the family dendrophylliidae of the Philippines, facile photochemical (Z/E) photoisomerization and thermal reversal. Helv Chim Acta 72:1444–1450. CrossRefGoogle Scholar
  23. 23.
    Johnson JE, Canseco DC, Dolliver DD, Schetz JA, Fronczek FR (2009) Synthesis and characterization of aplysinopsin analogs. J Chem Crystallogr 39:329–336. CrossRefGoogle Scholar
  24. 24.
    Segraves NL, Crews P (2005) Investigation of brominated tryptophan alkaloids from two thorectidae sponges: Thorectandra and Smenospongia. J Nat Prod 68:1484–1488. CrossRefPubMedGoogle Scholar
  25. 25.
    Koh E, Sweatman H (2000) Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors. J Exp Mar Biol Ecol 251:141–160CrossRefPubMedGoogle Scholar
  26. 26.
    Iwagawa T, Miyazaki M, Okamura H, Nakatani M, Doe M, Takemura K (2003) Three novel bis(indole) alkaloids from a stony coral, Tubastraea sp. Tetrahedron Lett 44:2533–2535. CrossRefGoogle Scholar
  27. 27.
    Mancini I, Guella G, Zibrowius H, Pietra F (2003) On the origin of quasi-racemic aplysinopsin cycloadducts, (bis)indole alkaloids isolated from scleractinian corals of the family Dendrophylliidae. Involvement of enantiodefective Diels–Alderases or asymmetric induction in artifact processes involving adventitious catalysts? Tetrahedron 59:8757–8762. CrossRefGoogle Scholar
  28. 28.
    Meyer M, Delberghe F, Liron F, Guillaume M, Valentin A, Guyot M (2009) An antiplasmodial new (bis)indole alkaloid from the hard coral Tubastraea sp. Nat Prod Res 23:178–182. CrossRefPubMedGoogle Scholar
  29. 29.
    Boyd EM, Sperry J (2010) On the origin of dimeric aplysinopsin alkaloids. Chem N Z 74:109Google Scholar
  30. 30.
    Djura P, Faulkner DJ (1980) Metabolites of the marine sponge Dercitus species. J Org Chem 45:735–737. CrossRefGoogle Scholar
  31. 31.
    Stanovnik B, Svete J (2005) The synthesis Aplysinopsins, Meridianines, and related compounds. Mini-Rev Org Chem 2:211–224. CrossRefGoogle Scholar
  32. 32.
    Stanovnik B, Jakse R, Groselj U, Sorsak G, Svete J (2007) Synthesis of thioaplysinopsin analogs derived from 5-Dimethylaminomethylidene-2-thioxo-1,3-thiazol-4-ones. Heterocycles 73:743. CrossRefGoogle Scholar
  33. 33.
    Porwal S, Chauhan SS, Chauhan PMS, Shakya N, Verma A, Gupta S (2009) Discovery of novel antileishmanial agents in an attempt to synthesize pentamidine-aplysinopsin hybrid molecule. J Med Chem 52:5793–5802. CrossRefPubMedGoogle Scholar
  34. 34.
    Penthala NR, Yerramreddy TR, Crooks PA (2010) Microwave assisted synthesis and in vitro cytotoxicities of substituted (Z)-2-amino-5-(1-benzyl-1H-indol-3-yl)methylene-1-methyl-1H-imidazol-4(5H)-ones against human tumor cell lines. Bioorg Med Chem Lett 20:591–593. CrossRefPubMedGoogle Scholar
  35. 35.
    Penthala NR, Yerramreddy TR, Crooks PA (2011) Synthesis and in vitro screening of novel N-benzyl aplysinopsin analogs as potential anticancer agents. Bioorg Med Chem Lett 21:1411–1413. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thirupathi Reddy Y, Narsimha Reddy P, Koduru S, Damodaran C, Crooks PA (2010) Aplysinopsin analogs: synthesis and anti-proliferative activity of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-diones. Bioorg Med Chem 18:3570–3574. CrossRefPubMedGoogle Scholar
  37. 37.
    Suzdalev KF, Babakova MN (2016) Synthesis of analogues of Indole alkaloids from sea sponges – Aplysinopsins by the reaction of amines with (4Z)-4-[(1H-indol-3-yl)-methylene]-1,3-oxazol-5(4H)-ones. J Heterocycl Chem 53:1200–1206. CrossRefGoogle Scholar
  38. 38.
    Hollenbeak KH, Schmitz FJ (1977) Aplysinopsin: antineoplastic tryptophan derivative from the marine sponge Verongia spengelii. Lloydia 40:479–481PubMedGoogle Scholar
  39. 39.
    Laport MS, Santos OCS, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105CrossRefPubMedGoogle Scholar
  40. 40.
    Gulati D, Chauhan P, Bhakuni R (1994) A new synthesis of aplysinopsin, a marine alkaloid and its analogues and their biological activities. Indian J Chem B 1994:4–9Google Scholar
  41. 41.
    Tymiak AA, Rinehart KL, Bakus GJ (1985) Constituents of morphologically similar sponges. Tetrahedron 41:1039–1047. CrossRefGoogle Scholar
  42. 42.
    Bialonska D, Zjawiony JK (2009) Aplysinopsins – marine Indole alkaloids: chemistry, bioactivity and ecological significance. Mar Drugs 7:166–183. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hu J-F, Schetz JA, Kelly M, Peng J-N, Ang KKH, Flotow H, Leong CY, Ng SB, Buss AD, Wilkins SP, Hamann MT (2002) New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the Jamaican sponge Smenospongia aurea. J Nat Prod 65:476–480CrossRefPubMedGoogle Scholar
  44. 44.
    Passemar C, Saléry M, Soh PN, Linas M-D, Ahond A, Poupat C, Benoit-Vical F (2011) Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules. Phytomedicine 18:1118–1125. CrossRefPubMedGoogle Scholar
  45. 45.
    WHO|World Malaria Report (2013) [WWW Document], 2013. WHO. Accessed 26 Feb 2017
  46. 46.
    Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7:4267–4277. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poola NR, Kalis M, Plakogiannis FM, Taft DR (2003) Characterization of pentamidine excretion in the isolated perfused rat kidney. J Antimicrob Chemother 52:397–404. CrossRefPubMedGoogle Scholar
  48. 48.
    Bhattacharya SK, Sinha PK, Sundar S, Thakur CP, Jha TK, Pandey K, Das VR, Kumar N, Lal C, Verma N, Singh VP, Ranjan A, Verma RB, Anders G, Sindermann H, Ganguly NK (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196:591–598. CrossRefPubMedGoogle Scholar
  49. 49.
    Cummings DF, Canseco DC, Sheth P, Johnson JE, Schetz JA (2010) Synthesis and structure-affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes. Bioorg Med Chem 18:4783–4792. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Batsanov SS (2001) Van der Waals radii of elements. Inorg Mater 37:871–885. CrossRefGoogle Scholar
  51. 51.
    Lewellyn K, Bialonska D, Loria MJ, White SW, Sufka KJ, Zjawiony JK (2013) In vitro structure–activity relationships of aplysinopsin analogs and their in vivo evaluation in the chick anxiety–depression model. Bioorg Med Chem 21:7083–7090. CrossRefPubMedGoogle Scholar
  52. 52.
    Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841CrossRefPubMedGoogle Scholar
  53. 53.
    Centers for Disease Control and Prevention (CDC) (1997) Cardiac valvulopathy associated with exposure to fenfluramine or dexfenfluramine: U.S. Department of Health and Human Services interim public health recommendations, November 1997. MMWR Morb Mortal Wkly Rep 46:1061–1066Google Scholar
  54. 54.
    Baird-Lambert J, Davis PA, Taylor KM (1982) Methylaplysinopsin: a natural product of marine origin with effects on serotonergic neurotransmission. Clin Exp Pharmacol Physiol 9:203–212. CrossRefPubMedGoogle Scholar
  55. 55.
    Fiedorowicz JG, Swartz KL (2004) The role of monoamine oxidase inhibitors in current psychiatric practice. J Psychiatr Pract 10:239–248CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. CrossRefPubMedGoogle Scholar
  57. 57.
    Prins LHA, Petzer JP, Malan SF (2010) Inhibition of monoamine oxidase by indole and benzofuran derivatives. Eur J Med Chem 45:4458–4466. CrossRefPubMedGoogle Scholar
  58. 58.
    Sant’ Anna Gda S, Machado P, Sauzem PD, Rosa FA, Rubin MA, Ferreira J, Bonacorso HG, Zanatta N, Martins MAP (2009) Ultrasound promoted synthesis of 2-imidazolines in water: a greener approach toward monoamine oxidase inhibitors. Bioorg Med Chem Lett 19:546–549. CrossRefPubMedGoogle Scholar
  59. 59.
    Lewellyn K, Bialonska D, Chaurasiya ND, Tekwani BL, Zjawiony JK (2012) Synthesis and evaluation of aplysinopsin analogs as inhibitors of human monoamine oxidase A and B. Bioorg Med Chem Lett 22:4926–4929. CrossRefPubMedGoogle Scholar
  60. 60.
    Morón JA, Campillo M, Perez V, Unzeta M, Pardo L (2000) Molecular determinants of MAO selectivity in a series of indolylmethylamine derivatives: biological activities, 3D-QSAR/CoMFA analysis, and computational simulation of ligand recognition. J Med Chem 43:1684–1691CrossRefPubMedGoogle Scholar
  61. 61.
    Balansa W, Islam R, Gilbert DF, Fontaine F, Xiao X, Zhang H, Piggott AM, Lynch JW, Capon RJ (2013) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425. CrossRefPubMedGoogle Scholar
  62. 62.
    Manzke T, Niebert M, Koch UR, Caley A, Vogelgesang S, Hülsmann S, Ponimaskin E, Müller U, Smart TG, Harvey RJ, Richter DW (2010) Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice. J Clin Invest 120:4118–4128. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Eichler SA, Kirischuk S, Jüttner R, Schafermeier PK, Legendre P, Lehmann T-N, Gloveli T, Grantyn R, Meier JC (2008) Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med 12:2848–2866. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chung S-K, Vanbellinghen J-F, Mullins JGL, Robinson A, Hantke J, Hammond CL, Gilbert DF, Freilinger M, Ryan M, Kruer MC, Masri A, Gurses C, Ferrie C, Harvey K, Shiang R, Christodoulou J, Andermann F, Andermann E, Thomas RH, Harvey RJ, Lynch JW, Rees MI (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30:9612–9620. CrossRefPubMedGoogle Scholar
  65. 65.
    Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg Med Chem 18:2912–2919. CrossRefPubMedGoogle Scholar
  66. 66.
    Ang KK, Holmes MJ, Higa T, Hamann MT, Kara UA (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44:1645–1649CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kochanowska AJ, Rao KV, Childress S, El-Alfy A, Matsumoto RR, Kelly M, Stewart GS, Sufka KJ, Hamann MT (2008) Secondary metabolites from three Florida sponges with antidepressant activity. J Nat Prod 71:186–189. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sufka KJ, Feltenstein MW, Warnick JE, Acevedo EO, Webb HE, Cartwright CM (2006) Modeling the anxiety-depression continuum hypothesis in domestic fowl chicks. Behav Pharmacol 17:681–689. CrossRefPubMedGoogle Scholar
  69. 69.
    Warnick JE, Wicks RT, Sufka KJ (2006) Modeling anxiety-like states: pharmacological characterization of the chick separation stress paradigm. Behav Pharmacol 17:581–587. CrossRefPubMedGoogle Scholar
  70. 70.
    van de Waterbeemd H, Smith DA, Beaumont K, Walker DK (2001) Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 44:1313–1333. CrossRefGoogle Scholar
  71. 71.
    Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, Lemos JC, Hagan CE, Neumaier JF, Quintana A, Palmiter RD, Chavkin C (2011) Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71:498–511. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyUniversity of MississippiOxfordUSA
  2. 2.Department of BioMolecular Sciences, Division of Pharmacognosy, School of PharmacyUniversity of MississippiOxfordUSA

Personalised recommendations