The Marine-Derived Filamentous Fungi in Biotechnology

Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

For a long time considered as essentially terrestrial organisms, filamentous fungi have recently disclosed to be widespread in marine habitats. Such a pervasiveness not only concerns obligate marine species but also a multitude of taxa known from disparate terrestrial substrates whose occurrence at sea, at first considered incidental, is now regarded as an evidence of extreme ecological flexibility. Actually, the peculiar physico-chemical properties of the marine environment are presumed to have induced special physiological adaptations that could be considered in view of a possible biotechnological exploitation of fungal strains recovered from marine sources. The potential of filamentous fungi reported from marine contexts for the manifold applications in biotechnology involving microbial strains is revised in this chapter.

References

  1. 1.
    Bennett JW (1998) Mycotechnology: the role of fungi in biotechnology. J Biotechnol 66(2–3):101–107PubMedGoogle Scholar
  2. 2.
    Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 61-92Google Scholar
  3. 3.
    Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112Google Scholar
  4. 4.
    Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73(S1):790–801Google Scholar
  5. 5.
    Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, pp 234–257Google Scholar
  6. 6.
    Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92(3):453–458Google Scholar
  7. 7.
    Campbell J, Inderbitzin P, Kohlmeyer J et al (2009) Koralionastetales, a new order of marine Ascomycota in the Sordariomycetes. Mycol Res 113(3):373–380PubMedGoogle Scholar
  8. 8.
    Jones EBG, Sakayaroj J, Suetrong S et al (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  9. 9.
    Gnavi G, Ercole E, Panno L et al (2014) Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidonia oceanica based on rDNA data. SpringerPlus 3:508PubMedPubMedCentralGoogle Scholar
  10. 10.
    Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54(4):343–354Google Scholar
  11. 11.
    Edgcomb VP, Beaudoin D, Gast R et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13(1):172–183PubMedGoogle Scholar
  12. 12.
    Le Calvez T, Burgaud G, Mahé S et al (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75(20):6415–6421PubMedPubMedCentralGoogle Scholar
  13. 13.
    Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341(2):69–78PubMedGoogle Scholar
  14. 14.
    Nagano Y, Nagahama T, Hatada Y et al (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3(4):316–325Google Scholar
  15. 15.
    Singh P, Raghukumar C, Verma P et al (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61(3):507–551PubMedGoogle Scholar
  16. 16.
    Xu W, Luo ZH, Guo S et al (2016) Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res Part I: Oceanogr Res Pap 109:51–60Google Scholar
  17. 17.
    Overy DP, Bayman P, Kerr RG et al (2014) An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. Mycology 5(3):145–167PubMedPubMedCentralGoogle Scholar
  18. 18.
    Pang KL, Overy DP, Jones EG et al (2016) ‘Marine fungi’and ‘marine-derived fungi’in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30(4):163–175Google Scholar
  19. 19.
    Panno L, Bruno M, Voyron S et al (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30(6):685–694Google Scholar
  20. 20.
    Kurtzman CP, Sugiyama J (2015) Saccharomycotina and Taphrinomycotina: the yeasts and yeastlike fungi of the Ascomycota. In: Systematics and evolution. Springer, Berlin, pp 3–33Google Scholar
  21. 21.
    Wang QM, Yurkov AM, Göker M et al (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189PubMedGoogle Scholar
  22. 22.
    Hernandez-Saavedra NY, Ochoa JL, Vazquez-Dulhalt R (1995) Osmotic adjustment in marine yeast. J Plankton Res 17(1):59–69Google Scholar
  23. 23.
    Benito B, Garciadeblás B, Rodrıguez-Navarro A (2002) Potassium-or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148(4):933–941PubMedGoogle Scholar
  24. 24.
    Damare S, Raghukumar C, Muraleedharan UD et al (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol 39(2):172–181Google Scholar
  25. 25.
    Lorenz R, Molitoris HP (1992) Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi. Can J Bot 70(10):2111–2115Google Scholar
  26. 26.
    Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4(1):111–120PubMedGoogle Scholar
  27. 27.
    Li W, Wang MM, Wang XG et al (2016) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci Rep 6:26528PubMedPubMedCentralGoogle Scholar
  28. 28.
    Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res Part I: Oceanogr Res Pap 53(1):14–27Google Scholar
  29. 29.
    Singh P, Raghukumar C, Verma P et al (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40(1):89–102Google Scholar
  30. 30.
    Lai X, Cao L, Tan H et al (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762PubMedGoogle Scholar
  31. 31.
    Jebaraj CS, Raghukumar C, Behnke A et al (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71(3):399–412PubMedGoogle Scholar
  32. 32.
    Burgaud G, Le Calvez T, Arzur D et al (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11(6):1588–1600PubMedGoogle Scholar
  33. 33.
    Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50(3):408–417PubMedGoogle Scholar
  34. 34.
    Bass D, Howe A, Brown N et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc Lond B Biol Sci 274(1629):3069–3077Google Scholar
  35. 35.
    Burgaud G, Arzur D, Durand L et al (2011) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. Microb Ecol 73:121–133Google Scholar
  36. 36.
    Rédou V, Navarri M, Meslet-Cladière L et al (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81(10):3571–3583PubMedPubMedCentralGoogle Scholar
  37. 37.
    Raghukumar C, Raghukumar S, Sheelu G et al (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res Part I: Oceanogr Res Pap 51(11):1759–1768Google Scholar
  38. 38.
    Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113(11):1231–1241PubMedGoogle Scholar
  39. 39.
    Ali I, Kanhayuwa L, Rachdawong S et al (2013) Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann Microbiol 63(3):887–895Google Scholar
  40. 40.
    Nayak SS, Gonsalves V, Nazareth SW (2012) Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa-India. Indian J Geo-Mar Sci 41(2):164–172Google Scholar
  41. 41.
    Matheny PB, Gossmann JA, Zalar P et al (2006) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot 84(12):1794–1805Google Scholar
  42. 42.
    Zalar P, de Hoog GS, Schroers HJ et al (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov). Antonie van Leeuwenhoek 87:311–328PubMedGoogle Scholar
  43. 43.
    Gostinčar C, Grube M, De Hoog S et al (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11PubMedGoogle Scholar
  44. 44.
    Kogej T, Stein M, Volkmann M et al (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153(12):4261–4273PubMedGoogle Scholar
  45. 45.
    Solomon PS, Waters OD, Oliver RP (2007) Decoding the mannitol enigma in filamentous fungi. Trends Microbiol 15(6):257–262PubMedGoogle Scholar
  46. 46.
    Agarwal PK, Shukla PS, Gupta K et al (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123PubMedGoogle Scholar
  47. 47.
    Cuomo V, Vanzanella F, Fresi E et al (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84(1):35–40Google Scholar
  48. 48.
    Sakayaroj J, Preedanon S, Supaphon O et al (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42(1):27–45Google Scholar
  49. 49.
    Mata JL, Cebrián J (2013) Fungal endophytes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico. Bot Mar 56(5-6):541–545Google Scholar
  50. 50.
    Meyers SP, Orpurt PA, Simms J et al (1965) Thalassiomycetes VII. Observations on fungal infestation of turtle grass, Thalassia testudinum König. Bull Mar Sci 15(3):548–564Google Scholar
  51. 51.
    Newell SY, Fell JW (1980) Mycoflora of turtlegrass (Thalassia testudinum Konig) as recorded after seawater incubation. Bot Mar 23(4):265–275Google Scholar
  52. 52.
    Newell SY (1981) Fungi and bacteria in or on leaves of eelgrass (Zostera marina L.) from Chesapeake Bay. Appl Environ Microb 41(5):1219–1224Google Scholar
  53. 53.
    Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endophytes in three temperate Northeast Pacific seagrasses. Aquat Bot 111:71–73Google Scholar
  54. 54.
    Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31(1):73–74Google Scholar
  55. 55.
    Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65Google Scholar
  56. 56.
    Gachon CM, Sime-Ngando T, Strittmatter M et al (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15(11):633–640PubMedGoogle Scholar
  57. 57.
    Garzoli L, Gnavi G, Varese GC et al (2015) Mycobiota associated with the rhodophyte alien species Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon in the Mediterranean Sea. Mar Ecol 36(4):959–968Google Scholar
  58. 58.
    Gnavi G, Esposito FP, Festa C et al (2016) The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling. Res Microbiol 167(6):492–500PubMedGoogle Scholar
  59. 59.
    Loque CP, Medeiros AO, Pellizzari FM et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648Google Scholar
  60. 60.
    Stanley SJ (1992) Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70(10):2089–2096Google Scholar
  61. 61.
    Zuccaro A, Schoch CL, Spatafora JW et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941PubMedGoogle Scholar
  62. 62.
    Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466PubMedGoogle Scholar
  63. 63.
    Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In: Biology of marine fungi. Springer, Berlin, pp 53–69Google Scholar
  64. 64.
    Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobiont of Apophlaea, Ascophyllum and Pelvetia. Syst Ascomycetum 16:1–7Google Scholar
  65. 65.
    Xu H, Deckert RJ, Garbary DJ (2008) Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. nodosum (Phaeophyceae) and Mycophycias ascophylli (Ascomycetes). Botany 86:185–193Google Scholar
  66. 66.
    Zuccaro A, Summerbell RC, Gams W et al (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297Google Scholar
  67. 67.
    Yu Z, Zhang B, Sun W et al (2013) Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers 58(1):127–141Google Scholar
  68. 68.
    Zhao HY, Anbuchezhian R, Sun W et al (2016) Cytotoxic nitrobenzoyloxy-substituted sesquiterpenes from sponge derived endozoic fungus Aspergillus insulicola MD10-2. Curr Pharm Biotechnol 17(3):271–274PubMedGoogle Scholar
  69. 69.
    Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13(5):229–235PubMedGoogle Scholar
  70. 70.
    Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like. Mar Ecol Prog Ser 117:137–147Google Scholar
  71. 71.
    Bayman P (2008) Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs 27(3):707–714Google Scholar
  72. 72.
    Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164(S5):S52–S63PubMedGoogle Scholar
  73. 73.
    Smith GW, Ives LD, Nagelkerken IA et al (1996) Caribbean sea-fan mortalities. Nature 383:487Google Scholar
  74. 74.
    Toledo-Hernández C, Zuluaga-Montero A, Bones-González A et al (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8(4):1417–1468Google Scholar
  75. 75.
    Hayashi A, Crombie A, Lacey E et al (2016) Aspergillus sydowii marine fungal bloom in Australian coastal waters, its metabolites and potential impact on Symbiodinium dinoflagellates. Mar Drugs 14(3):59PubMedCentralGoogle Scholar
  76. 76.
    Wegley L, Edwards R, Rodriguez-Brito B et al (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9(11):2707–2719PubMedGoogle Scholar
  77. 77.
    Zhang XY, Bao J, Wang GH et al (2012) Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol 64(3):617–627PubMedGoogle Scholar
  78. 78.
    Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6(7):1291–1301PubMedGoogle Scholar
  79. 79.
    Da Silva M, Passarini MRZ, Bonugli RC et al (2008) Cnidaria-derived filamentous fungi from Brasil: isolation, characterization, and RBBR decolourization screening. Environ Technol 29(12):1331–1339PubMedGoogle Scholar
  80. 80.
    Sweet M, Bulling M, Cerrano C (2015) A novel sponge disease caused by a consortium of micro-organisms. Coral Reefs 34(3):871–883Google Scholar
  81. 81.
    Baker PW, Kennedy J, Dobson ADW et al (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish Coastal Waters. Mar Biotechnol 11(4):540–547PubMedGoogle Scholar
  82. 82.
    Ding B, Yin Y, Zhang F et al (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13(4):713–721PubMedGoogle Scholar
  83. 83.
    Henríquez M, Vergara K, Norambuena J et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30(1):65–76PubMedGoogle Scholar
  84. 84.
    Höller U, Wright AD, Matthee GF et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104(11):1354–1365Google Scholar
  85. 85.
    Liu WC, Li CQ, Zhu P et al (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42(1):1–15Google Scholar
  86. 86.
    Paz Z, Komon-Zelazowska M, Druzhinina IS et al (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42(1):17–26Google Scholar
  87. 87.
    Pivkin MV, Aleshko SA, Krasokhin VB et al (2006) Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Russ J Mar Biol 32(4):207–213Google Scholar
  88. 88.
    Suryanarayanan TS (2012) The diversity and importance of fungi associated with marine sponges. Bot Mar 55:553–564Google Scholar
  89. 89.
    Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP et al (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55(1):37–46Google Scholar
  90. 90.
    Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie van Leeuwenhoek 93:163–174PubMedGoogle Scholar
  91. 91.
    Zhou K, Zhang X, Zhang F et al (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol 62(3):644–654PubMedGoogle Scholar
  92. 92.
    Gao Z, Li B, Zheng C et al (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74(19):6091–6101PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wiese J, Ohlendorf B, Blümel M et al (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9(4):561–585PubMedPubMedCentralGoogle Scholar
  94. 94.
    Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164(2):233–241PubMedGoogle Scholar
  95. 95.
    Maldonado M, Cortadellas N, Trillas M-I et al (2005) Endosymbiotic yeast maternally transmitted in a marine sponge. Biol Bull 209(2):94–106PubMedGoogle Scholar
  96. 96.
    Rot C, Goldfarb I, Ilan M et al (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71PubMedPubMedCentralGoogle Scholar
  97. 97.
    Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8(4):1417–1468PubMedPubMedCentralGoogle Scholar
  98. 98.
    Navarri M, Jégou C, Meslet-Cladière L et al (2016) Deep subseafloor fungi as an untapped reservoir of amphipathic antimicrobial compounds. Mar Drugs 14(3):50PubMedCentralGoogle Scholar
  99. 99.
    Silber J, Kramer A, Labes A et al (2016) From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Mar Drugs 14(7):137PubMedCentralGoogle Scholar
  100. 100.
    Xu L, Meng W, Cao C et al (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13(6):3479–3513PubMedPubMedCentralGoogle Scholar
  101. 101.
    Oh DC, Jensen PR, Kauffman CA et al (2005) Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13(17):5267–5273PubMedGoogle Scholar
  102. 102.
    Kolařík M, Spakowicz DJ, Gazis R et al (2017) Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst Evol 303(1):35–50Google Scholar
  103. 103.
    Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28(2):290–344PubMedGoogle Scholar
  104. 104.
    Jin L, Quan C, Hou X et al (2016) Potential pharmacological resources: natural bioactive compounds from marine-derived fungi. Mar Drugs 14(4):76PubMedCentralGoogle Scholar
  105. 105.
    Duarte K, Rocha-Santos TAP, Freitas AC et al (2012) Discovery of bioactive compounds from marine fungi: current analytical techniques and future perspectives. Trends Anal Chem 34:97–110Google Scholar
  106. 106.
    Kjer J, Debbab A, Aly AH et al (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5(3):479–490PubMedGoogle Scholar
  107. 107.
    Roullier C, Guitton Y, Valery M et al (2016) Automated detection of natural halogenated compounds from LC-MS profiles–application to the isolation of bioactive chlorinated compounds from marine-derived fungi. Anal Chem 88(18):9143–9150PubMedGoogle Scholar
  108. 108.
    Ji NY, Wang BG (2016) Mycochemistry of marine algicolous fungi. Fungal Divers 80(1):301–342Google Scholar
  109. 109.
    Gomes NG, Lefranc F, Kijjoa A et al (2015) Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs 13(6):3950–3991PubMedPubMedCentralGoogle Scholar
  110. 110.
    Moghadamtousi SZ, Nikzad S, Kadir HA et al (2015) Potential antiviral agents from marine fungi: an overview. Mar Drugs 13(7):4520–4538PubMedGoogle Scholar
  111. 111.
    Nicoletti R, Trincone A (2016) Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar Drugs 14(2):37PubMedCentralGoogle Scholar
  112. 112.
    Ruiz N, Roullier C, Petit K et al (2013) Marine-derived Trichoderma: a source of new bioactive metabolites. In: Trichoderma: biology and applications. CABI, pp 247–279Google Scholar
  113. 113.
    Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8(8):2340–2368PubMedPubMedCentralGoogle Scholar
  114. 114.
    Fouillaud M, Venkatachalam M, Girard-Valenciennes E et al (2016) Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 14(4):64PubMedCentralGoogle Scholar
  115. 115.
    Dufossé L, Fouillaud M, Caro Y et al (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61PubMedGoogle Scholar
  116. 116.
    Imhoff JF (2016) Natural products from marine fungi—still an underrepresented resource. Mar Drugs 14(1):19PubMedPubMedCentralGoogle Scholar
  117. 117.
    Caprile KA (1988) The cephalosporin antimicrobial agents: a comprehensive review. J Vet Pharmacol Ther 11(1):1–32PubMedGoogle Scholar
  118. 118.
    Kanoh K, Kohno S, Asari T et al (1997) (−)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 7(22):2847–2852Google Scholar
  119. 119.
    Millward M, Mainwaring P, Mita A et al (2012) Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel. Invest New Drugs 30(3):1065–1073PubMedGoogle Scholar
  120. 120.
    Isaka M, Suyarnsestakorn C, Tanticharoen M et al (2002) Aigialomycins A-E, new resorcyclic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67(5):1561–1566PubMedGoogle Scholar
  121. 121.
    Seo C, Sohn JH, Oh H et al (2009) Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorg Med Chem Lett 19:6095–6097PubMedGoogle Scholar
  122. 122.
    Osterhage C, Kaminsky R, König GM et al (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65(20):6412–6417PubMedGoogle Scholar
  123. 123.
    Fenical W, Jensen PR, Cheng XC (2000) Avrainvillamide, a cytotoxic marine natural product, and derivatives thereof. U.S. Patent 6,066,635, 23 May 2000Google Scholar
  124. 124.
    Uchida R, Nakajyo K, Kobayashi K et al (2016) 7-Chlorofolipastatin, an inhibitor of sterol O-acyltransferase, produced by marine-derived Aspergillus ungui NKH-007. J Antibiot 69:647–651PubMedGoogle Scholar
  125. 125.
    Gamal-Eldeen AM, Abdel-Lateff A, Okinoc T (2009) Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp. Environ Toxicol Pharmacol 28(3):317–322PubMedGoogle Scholar
  126. 126.
    Liberra K, Jansen R, Lindequist U (1998) Corollosporine, a new phtalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie 53:578–581PubMedGoogle Scholar
  127. 127.
    Numata A, Amagata T, Minoura K et al (1997) Gymnastatins, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett 38(32):5675–5678Google Scholar
  128. 128.
    Rowley DC, Kelly S, Kauffman CA et al (2003) Halovirs A–E, new antiviral agents from a marinederived fungus of the genus Scytalidium. Bioorg Med Chem 11(19):4263–4274PubMedGoogle Scholar
  129. 129.
    Chen C, Imamura IM, Adachi K et al (1996) Halymecins, new antimicroalgal substances produced by fungi isolated from a marine alga. J Antibiot 49(10):998–1005PubMedGoogle Scholar
  130. 130.
    Yanagihara M, Sasaki-Takahashi N, Sugahara T et al (2005) Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 96(11):816–824PubMedGoogle Scholar
  131. 131.
    Li X, Kim MK, Lee U et al (2005) Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull 53(4):453–455PubMedGoogle Scholar
  132. 132.
    Trisuwan K, Rukachaisirkul C, Sukpondma Y et al (2008) Epoxydons and pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J Nat Prod 71:1323–1326PubMedGoogle Scholar
  133. 133.
    Cueto M, Jensen PR, Kauffman C et al (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64(11):1444–1446PubMedGoogle Scholar
  134. 134.
    Hwang Y, Rowley D, Rhodes D et al (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55(6):1049–1053PubMedGoogle Scholar
  135. 135.
    Yu Z, Lang G, Kajahn I et al (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71(6):1052–1054PubMedGoogle Scholar
  136. 136.
    Bringmann G, Gulder TA, Lang G et al (2007) Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 5(2):23–30PubMedPubMedCentralGoogle Scholar
  137. 137.
    Nicoletti R, Fiorentino A (2014) Antitumor metabolites of fungi. Curr Bioactive Comp 10(4):207–244Google Scholar
  138. 138.
    Fu GY, Lu Y, Chi Z et al (2016) Cloning and characterization of a pyruvate carboxylase gene from Penicillium rubens and overexpression of the gene in the yeast Yarrowia lipolytica for enhanced citric acid production. Mar Biotechnol 18(1):1–14PubMedGoogle Scholar
  139. 139.
    Imandi SB, Bandaru VVR, Somalanka S et al (2008) Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour Technol 99(10):4445–4450PubMedGoogle Scholar
  140. 140.
    Liu XY, Chi Z, Li GL et al (2013) Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol 15(1):26–36PubMedGoogle Scholar
  141. 141.
    de Oliveira JR, Mizuno CM, Seleghim MHR et al (2013) Biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid by marine fungi. Mar Biotechnol 15(1):97–103PubMedGoogle Scholar
  142. 142.
    Masuda K, Guo XF, Uryu N et al (2008) Isolation of marine yeasts collected from the Pacific Ocean showing a high production of γ-aminobutyric acid. Biosci Biotechnol Biochem 72(12):3265–3272PubMedGoogle Scholar
  143. 143.
    Yang XB, Gao XD, Han F et al (2005) Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie 87(8):747–754PubMedGoogle Scholar
  144. 144.
    Sarlin PJ, Philip R (2011) Efficacy of marine yeasts and baker’s yeast as immunostimulants in Fenneropenaeus indicus: a comparative study. Aquaculture 321(3):173–178Google Scholar
  145. 145.
    Sukumaran V, Lowman DW, Sajeevan TP et al (2010) Marine yeast glucans confer better protection than that of baker’s yeast in Penaeus monodon against white spot syndrome virus infection. Aquacult Res 41(12):1799–1805Google Scholar
  146. 146.
    Babu DT, Antony SP, Joseph SP et al (2013) Marine yeast Candida aquaetextoris S527 as a potential immunostimulant in black tiger shrimp Penaeus monodon. J Invertebr Pathol 112(3):243–252PubMedGoogle Scholar
  147. 147.
    Sajeevan TP, Lowman DW, Williams DL et al (2009) Marine yeast diet confers better protection than its cell wall component (1-3)-β-d-glucan as an immunostimulant in Fenneropenaeus indicus. Aquacult Res 40(15):1723–1730Google Scholar
  148. 148.
    Sun C, Shan CY, Gao XD et al (2005) Protection of PC12 cells from hydrogen peroxide-induced injury by EPS2, an exopolysaccharide from a marine filamentous fungus Keissleriella sp. YS4108. J Biotechnol 115:137–144PubMedGoogle Scholar
  149. 149.
    Sun C, Wang JW, Fang L et al (2004) Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci 75:1063–1073PubMedGoogle Scholar
  150. 150.
    Sun HH, Mao WJ, Chen Y et al (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78(1):117–124Google Scholar
  151. 151.
    Yan MX, Mao WJ, Liu X et al (2016) Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc. Carbohydr Polym 147:272–281PubMedGoogle Scholar
  152. 152.
    Chen Y, Mao WJ, Yang YP et al (2012) Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus: Aspergillus versicolor LCJ-5-4. Carbohydr Polym 87:218–226Google Scholar
  153. 153.
    Wang CY, Mao WJ, Chen ZQ et al (2013) Purification: structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem 48:1395–1401Google Scholar
  154. 154.
    Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390PubMedPubMedCentralGoogle Scholar
  155. 155.
    Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29PubMedGoogle Scholar
  156. 156.
    Wu S, Chen J, Pan S (2012) Optimization of fermentation conditions for the production of pullulan by a new strain of Aureobasidium pullulans isolated from sea mud and its characterization. Carbohydr Polym 87(2):1696–1700Google Scholar
  157. 157.
    Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9(4):478–499PubMedPubMedCentralGoogle Scholar
  158. 158.
    Li HF, Chi ZM, Wang XH et al (2007) Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Technol 40:1006–1012Google Scholar
  159. 159.
    Ali I, Akbar A, Yanwisetpakdee B et al (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. BioMed Res Int 2015:article id 106937Google Scholar
  160. 160.
    Ali I, Akbar A, Anwar M et al (2015) Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. BioMed Res Int 2015:article id 245649Google Scholar
  161. 161.
    Baker PW, Kennedy J, Morrissey J et al (2010) Endoglucanase activities and growth of marine-derived fungi isolated from the sponge Haliclona simulans. J Appl Microbiol 108(5):1668–1675PubMedGoogle Scholar
  162. 162.
    Xue DS, Chen HY, Lin DQ et al (2012) Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology. Appl Biochem Biotechnol 167(7):1963–1972PubMedGoogle Scholar
  163. 163.
    Hong JH, Jang S, Heo YM et al (2015) Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs 13(7):4137–4155PubMedPubMedCentralGoogle Scholar
  164. 164.
    Lee H, Lee YM, Heo YM et al (2015) Halo-tolerance of marine-derived fungi and their enzymatic properties. BioResources 10(4):8450–8460Google Scholar
  165. 165.
    Grant WD, Atkinson M, Burke B et al (1996) Chitinolysis by the marine ascomycete Corollospora maritima Werdermann: purification and properties of a chitobiosidase. Bot Mar 39(1–6):177–186Google Scholar
  166. 166.
    Suresh PV, Chandrasekaran M (1998) Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World J Microbiol Biotechnol 14(5):655–660Google Scholar
  167. 167.
    Xue DS, Chen HY, Ren YR et al (2012) Enhancing the activity and thermostability of thermostable β-glucosidase from a marine Aspergillus niger at high salinity. Process Biochem 47(4):606–611Google Scholar
  168. 168.
    Bonugli-Santos RC, Durrant LR, Da Silva M et al (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46(1):32–37Google Scholar
  169. 169.
    Huang YL, Locy R, Weete JD (2004) Purification and characterization of an extracellular lipase from Geotrichum marinum. Lipids 39:251–257PubMedGoogle Scholar
  170. 170.
    Wang L, Chi ZM, Wang XH et al (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol 57:495–501Google Scholar
  171. 171.
    Babu IS, Rao GH (2007) Optimization of process parameters for the production of lipase in submerged fermentation by Yarrowia lipolytica NCIM 3589. Res J Microbiol 2(1):88–93Google Scholar
  172. 172.
    Liu ZQ, Li XY, Chi ZM (2008) Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie van Leeuwenhoek 94:245–255PubMedGoogle Scholar
  173. 173.
    Basheer SM, Chellappan S, Beena PS et al (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnol 28(6):627–638Google Scholar
  174. 174.
    Duarte AWF, Dayo-Owoyemi I, Nobre FS et al (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035PubMedGoogle Scholar
  175. 175.
    Chi ZM, Ma C, Wang P et al (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98(3):534–538PubMedGoogle Scholar
  176. 176.
    Ni X, Yue L, Chi Z et al (2009) Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Mar Biotechnol 11(1):81–89PubMedGoogle Scholar
  177. 177.
    Beena PS, Soorej MB, Elyas KK et al (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20:1403–1414PubMedGoogle Scholar
  178. 178.
    Beena PS, Basheer SM, Bhat SG et al (2011) Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamorii BTMFW032. Appl Biochem Biotechnol 164:612–628PubMedGoogle Scholar
  179. 179.
    Raghukumar C, Muraleedharan U, Gaud VR et al (2004) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31(9):433–441PubMedGoogle Scholar
  180. 180.
    Del-Cid A, Ubilla P, Ravanal MC et al (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172(1):524–532PubMedGoogle Scholar
  181. 181.
    Krishnan A, Alias SA, Wong CMVL et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34(10):1535–1542Google Scholar
  182. 182.
    Vaca I, Faúndez C, Maza F et al (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29(1):183–189PubMedGoogle Scholar
  183. 183.
    Vaz AB, Rosa LH, Vieira ML et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazil J Microbiol 42(3):937–947Google Scholar
  184. 184.
    Bonugli-Santos RC, Vasconcelos S, Passarini MR et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269PubMedPubMedCentralGoogle Scholar
  185. 185.
    Abe F, Miura T, Nagahama T et al (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23(24):2027–2034Google Scholar
  186. 186.
    Miura T, Abe F, Inoue A et al (2002) Superoxide dismutase is involved in high tolerance to copper in the deep-sea yeast, Cryptococcus sp. N6. Biotechnol Lett 24:1069–1074Google Scholar
  187. 187.
    Sabu A, Keerthi TR, Kumar SR et al (2000) l-Glutaminase production by marine Beauveria sp. under solid state fermentation. Proc Biochem 35(7):705–710Google Scholar
  188. 188.
    Song CL, Liu GL, Xu JL et al (2010) Purification and characterization of extracellular β-galactosidase from the psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica. Process Biochem 45:954–960Google Scholar
  189. 189.
    Rocha LC, Ferreira HV, Pimenta EF et al (2009) Bioreduction of α-chloroacetophenone by whole cells of marine fungi. Biotechnol Lett 31(10):1559–1563PubMedGoogle Scholar
  190. 190.
    Rocha LC, Ferreira HV, Pimenta EF et al (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Mar Biotechnol 12(5):552–557PubMedGoogle Scholar
  191. 191.
    Martins MP, Mouad AM, Boschini L et al (2011) Marine fungi Aspergillus sydowii and Trichoderma sp. catalyze the hydrolysis of benzyl glycidyl ether. Mar Biotechnol 13(2):314–320PubMedGoogle Scholar
  192. 192.
    Li XY, Liu ZQ, Chi ZM et al (2009) Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res 113:24–32PubMedGoogle Scholar
  193. 193.
    Kalim B, Böhringer N, Ali N et al (2015) Xylanases–from microbial origin to industrial application. Br Biotechnol J 7(1):1–20Google Scholar
  194. 194.
    Chi ZM, Zhang T, Cao TS et al (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303PubMedGoogle Scholar
  195. 195.
    Gong F, Zhang T, Chi Z et al (2008) Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnol Bioprocess Eng 13(5):533–539Google Scholar
  196. 196.
    Sheng J, Chi Z, Gong F et al (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144(2):111–121PubMedGoogle Scholar
  197. 197.
    Li M, Liu GL, Chi Z et al (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 4:101–107Google Scholar
  198. 198.
    Zhao CH, Chi Z, Zhang F et al (2011) Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol 102:6128–6133PubMedGoogle Scholar
  199. 199.
    Gupta A, Vongsvivut J, Barrow CJ et al (2012) Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J Biosci Bioeng 114:411–417PubMedGoogle Scholar
  200. 200.
    Katre G, Joshi C, Khot M et al (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Expr 2:36–42Google Scholar
  201. 201.
    Wang ZP, Fu WJ, Xu HM et al (2014) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131–136PubMedGoogle Scholar
  202. 202.
    Wang GY, Chi Z, Song B et al (2012) High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresour Technol 124:77–82PubMedGoogle Scholar
  203. 203.
    Guo N, Gong F, Chi Z et al (2009) Enhanced inulinase production in solid state fermentation by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. J Ind Microbiol Biotechnol 36:499–507PubMedGoogle Scholar
  204. 204.
    Zhang T, Chi Z, Zhao CH et al (2010) Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresour Technol 101:8166–8170PubMedGoogle Scholar
  205. 205.
    Liu GL, Fu GY, Chi Z et al (2014) Enhanced expression of the codon optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129–9138PubMedGoogle Scholar
  206. 206.
    Zhang LL, Liu GL, Chi Z et al (2015) Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production. Mol Biotechnol 57:337–347PubMedGoogle Scholar
  207. 207.
    Cao TS, Wang GY, Chi Z et al (2013) Cloning, characterization and heterelogous expression of the INU1 gene from Cryptococcus aureus HYA. Gene 516(2):255–262PubMedGoogle Scholar
  208. 208.
    Bucher VVC, Hyde KD, Pointing SB et al (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14Google Scholar
  209. 209.
    Park MS, Fong JJ, Oh SY et al (2014) Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek 106(2):331–345PubMedGoogle Scholar
  210. 210.
    Liu J, Xue D, He K et al (2012) Cellulase production in solid-state fermentation by marine Aspergillus sp. ZJUBE-1 and its enzymological properties. Adv Sci Lett 16(1):381–386Google Scholar
  211. 211.
    Mouton M, Postma F, Wilsenach J et al (2012) Diversity and characterization of culturable fungi from marine sediment collected from St. Helena Bay, South Africa. Microb Ecol 64(2):311–319PubMedGoogle Scholar
  212. 212.
    Rong Y, Zhang L, Chi Z et al (2015) A carboxymethyl cellulase from a marine yeast (Aureobasidium pullulans 98): its purification, characterization, gene cloning and carboxymethyl cellulose digestion. J Ocean Univ China 14(5):913–921Google Scholar
  213. 213.
    Padmavathi T, Agarwal P, Nandy V (2012) Exploring marine fungal strains for cellulose production. Ann Biol Res 3:3602–3613Google Scholar
  214. 214.
    Xue D, Lin D, Gong C et al (2017) Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger. Process Biochem 52(1):115–122Google Scholar
  215. 215.
    Trivedi N, Reddy CRK, Radulovich R et al (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54Google Scholar
  216. 216.
    Khambhaty Y, Upadhyay D, Kriplani Y et al (2013) Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenergy Res 6:188–195Google Scholar
  217. 217.
    Zaky AS, Greetham D, Louis EJ et al (2016) A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. J Microbiol Biotechnol 26(11):1891–1907PubMedGoogle Scholar
  218. 218.
    Garzoli L, Gnavi G, Tamma F et al (2015) Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Progr Oceanogr 137(A):140–148Google Scholar
  219. 219.
    Sigoillot C, Camarero S, Vidal T et al (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115(4):333–343PubMedGoogle Scholar
  220. 220.
    Thirunavukkarasu N, Jahnes B, Broadstock A et al (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109(1):112–120Google Scholar
  221. 221.
    El-Bondkly AM (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167(8):2160–2173PubMedGoogle Scholar
  222. 222.
    Mostafa FA, El Aty AAA, Wehaidy HR (2014) Improved xylanase production by mixing low cost wastes and novel co-culture of three marine-derived fungi in solid state fermentation. Int J Curr Microbiol App Sci 3:336–349Google Scholar
  223. 223.
    Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196Google Scholar
  224. 224.
    Chen HY, Guan YX, Yao SJ (2014) A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment. J Chem Technol Biotechnol 89(11):1733–1740Google Scholar
  225. 225.
    Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99(11):4648–4660PubMedGoogle Scholar
  226. 226.
    Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1):161–187PubMedGoogle Scholar
  227. 227.
    Imran M, Crowley DE, Khalid A et al (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14(1):73–92Google Scholar
  228. 228.
    D’Souza DT, Tiwari R, Ak S et al (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38(3–4):504–511Google Scholar
  229. 229.
    D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11(6):725–737PubMedGoogle Scholar
  230. 230.
    Passarini MR, Ottoni CA, Santos C et al (2015) Induction, expression and characterization of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Expr 5:19Google Scholar
  231. 231.
    Raghukumar C, D’Souza TM, Thorn RG et al (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65(5):2103–2111PubMedPubMedCentralGoogle Scholar
  232. 232.
    Bonugli-Santos RC, Durrant LR, Sette LD (2010) Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biol 114(10):863–872PubMedGoogle Scholar
  233. 233.
    Bonugli-Santos RC, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223(5):2333–2345Google Scholar
  234. 234.
    Luo W, Vrijmoed LL, Jones EB (2005) Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar 48(5–6):379–386Google Scholar
  235. 235.
    Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41(1–6):293–298Google Scholar
  236. 236.
    Raghukumar C, Chandramohan D, Michel FC et al (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18(1):105–106Google Scholar
  237. 237.
    Torres JMO, Cardenas CV, Moron LS et al (2011) Dye decolorization activities of marine-derived fungi isolated from Manila Bay and Calatagan Bay, Philippines. Philippine J Sci 140(2):133–143Google Scholar
  238. 238.
    Verma AK, Raghukumar C, Verma P et al (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21(2):217–233PubMedGoogle Scholar
  239. 239.
    Gal-Hemed I, Atanasova L, Komon-Zelazowska M et al (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77(15):5100–5105PubMedPubMedCentralGoogle Scholar
  240. 240.
    Farag AM, Abd-Elnabey HM, Ibrahim HA et al (2016) Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt J Aquat Res 42(2):185–192Google Scholar
  241. 241.
    Bovio E, Gnavi G, Prigione V et al (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318PubMedGoogle Scholar
  242. 242.
    Sadaba RB, Sarinas BGC (2010) Fungal communities in bunker C oil-impacted sites off southern Guimaras, Philippines: a post-spill assessment of Solar 1 oil spill. Bot Mar 53(6):565–576Google Scholar
  243. 243.
    Shinde VL, Suneel V, Shenoy BD (2017) Diversity of bacteria and fungi associated with tarballs: recent developments and future prospects. Mar Pollut Bull 115. in pressGoogle Scholar
  244. 244.
    Raghukumar C, Shailaja MS, Parameswaran PS et al (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC#312: involvement of lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35(4):373–379Google Scholar
  245. 245.
    Wu YR, He TT, Lun JS et al (2009) Removal of benzo[a]pyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25(8):1395–1401Google Scholar
  246. 246.
    Passarini MR, Rodrigues MV, da Silva M et al (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62(2):364–370PubMedGoogle Scholar
  247. 247.
    Zinjarde SS, Pant A (2000) Crude oil degradation by free and immobilized cells of Yarrowia lipolytica NCIM 3589. J Environ Sci Health A 35(5):755–763Google Scholar
  248. 248.
    Zinjarde SS, Pant AA (2002) Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44:118–121PubMedGoogle Scholar
  249. 249.
    Vatsal A, Zinjarde SS, Kumar AR (2011) Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties. Yeast 28(10):721–732PubMedGoogle Scholar
  250. 250.
    Zinjarde SS, Pant A (2002) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42(1):67–73PubMedGoogle Scholar
  251. 251.
    Amaral PFF, Da Silva JM, Lehocky M et al (2006) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41(8):1894–1898Google Scholar
  252. 252.
    Konishi M, Fukuoka T, Nagahama T et al (2010) Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J Biosci Bioeng 110(2):169–175PubMedGoogle Scholar
  253. 253.
    Cicatiello P, Gravagnuolo AM, Gnavi G et al (2016) Marine fungi as source of new hydrophobins. Int J Biol Macromol 92:1229–1233PubMedGoogle Scholar
  254. 254.
    Jain MR, Zinjarde SS, Deobagkar DD et al (2004) 2,4,6-trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Mar Pollut Bull 49(9–10):783–788PubMedGoogle Scholar
  255. 255.
    Bhatt M, Zhao JS, Halasz A et al (2006) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33(10):850–858PubMedGoogle Scholar
  256. 256.
    de Oliveira JR, Seleghim MHR, Porto ALM (2014) Biotransformation of methylphenylacetonitriles by Brazilian marine fungal strain Aspergillus sydowii CBMAI 934: eco-friendly reactions. Mar Biotechnol 16(2):156–160PubMedGoogle Scholar
  257. 257.
    Ortega SN, Nitschke M, Mouad AM et al (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22(1):43–50PubMedGoogle Scholar
  258. 258.
    Birolli WG, Alvarenga N, Vacondio B et al (2014) Growth assessment of marine-derived fungi in the presence of esfenvalerate and its main metabolites. J Microb Biochem Technol 6(5):260–267Google Scholar
  259. 259.
    Alvarenga N, Birolli WG, Seleghim MHR et al (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52PubMedGoogle Scholar
  260. 260.
    Rodrigues GN, Alvarenga N, Vacondio B et al (2016) Biotransformation of methyl parathion by marine-derived fungi isolated from ascidian Didemnum ligulum. Biocatal Agric Biotechnol 7:24–30Google Scholar
  261. 261.
    Birolli WG, Yamamoto KY, de Oliveira JR et al (2015) Biotransformation of dieldrin by the marine fungus Penicillium miczynskii CBMAI 930. Biocatal Agric Biotechnol 4(1):39–43Google Scholar
  262. 262.
    Ahumada-Rudolph R, Novoa V, Sáez K et al (2016) Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline. Environ Monitor Assess 188(8):1–10Google Scholar
  263. 263.
    Bishnoi NR (2005) Fungus-an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64:93–100Google Scholar
  264. 264.
    Marbaniang T, Nazareth S (2007) Isolation of halotolerant Penicillium species from mangroves and salterns and their resistance to heavy metals. Curr Sci 92(7):895–897Google Scholar
  265. 265.
    Taboski MA, Rand TG, Piórko A (2005) Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiol Ecol 53(3):445–453PubMedGoogle Scholar
  266. 266.
    Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Progr 27:1464–1469Google Scholar
  267. 267.
    Sun F, Shao Z (2007) Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 11(6):853–858PubMedGoogle Scholar
  268. 268.
    Khambhaty Y, Mody K, Basha S et al (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145(3):489–495Google Scholar
  269. 269.
    Bankar AV, Kumar AR, Zinjarde SS (2009) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater 170(1):487–494PubMedGoogle Scholar
  270. 270.
    Vala AK, Anand N, Bhatt PN et al (2004) Tolerance and accumulation of hexavalent chromium by two seaweed associated Aspergilli. Mar Pollut Bull 48:983–985PubMedGoogle Scholar
  271. 271.
    Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101(7):2565–2567PubMedGoogle Scholar
  272. 272.
    Gazem MA, Nazareth S (2013) Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Ann Microbiol 63(2):503–511Google Scholar
  273. 273.
    Shinde NR, Bankar AV, Kumar AR et al (2012) Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J Environ Manage 102:115–124PubMedGoogle Scholar
  274. 274.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262Google Scholar
  275. 275.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32Google Scholar
  276. 276.
    Kathiresan K, Manivannan S, Nabeel MA et al (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71(1):133–137PubMedGoogle Scholar
  277. 277.
    Subramanian M, Alikunhi NM, Kandasamy K (2010) In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Adv Sci Lett 3(4):428–433Google Scholar
  278. 278.
    Kathiresan K, Alikunhi NM, Pathmanaban S et al (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56(12):1050–1059PubMedGoogle Scholar
  279. 279.
    Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine-derived fungus Aspergillus flavus from Bhavnagar Coast, Gulf of Khambhat, India. J Mar Biol Oceanogr 3(1):2Google Scholar
  280. 280.
    Anand BG, Thomas CN, Prakash S et al (2015) Biosynthesis of silver nano-particles by marine sediment fungi for a dose dependent cytotoxicity against HEp2 cell lines. Biocatal Agric Biotechnol 4(2):150–157Google Scholar
  281. 281.
    Agnihotri M, Joshi S, Kumar AR et al (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234Google Scholar
  282. 282.
    Pimprikar PS, Joshi SS, Kumar AR et al (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surfaces B: Biointerfaces 74(1):309–316PubMedGoogle Scholar
  283. 283.
    Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Progr Sustain Ener 34(1):194–197Google Scholar
  284. 284.
    Jia JM, Chowdary PD, Gao X et al (2017) Control of cerebral ischemia with magnetic nanoparticles. Nat Methods 14(2):160–166PubMedGoogle Scholar
  285. 285.
    Gluck-Thaler E, Slot J (2015) Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog 11(10):e1005156PubMedPubMedCentralGoogle Scholar
  286. 286.
    Naranjo-Ortíz MA, Brock M, Brunke S et al (2016) Widespread inter-and intra-domain horizontal gene transfer of d-amino acid metabolism enzymes in eukaryotes. Front Microbiol 7:2001PubMedPubMedCentralGoogle Scholar
  287. 287.
    Kodzius R, Gojobori T (2015) Marine metagenomics as a source for bioprospecting. Mar Genomics 24:21–30PubMedGoogle Scholar
  288. 288.
    Zhang L, Kang M, Huang Y et al (2016) Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology. World J Microbiol Biotechnol 32(5):1–11PubMedGoogle Scholar
  289. 289.
    Oswal N, Sarma PM, Zinjarde SS et al (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Council for Agricultural Research and Agricultural Economy AnalysisRomeItaly
  2. 2.Department of AgricultureUniversity of Naples ‘Federico II’PorticiItaly
  3. 3.Department of Chemical SciencesUniversity of Naples ‘Federico II’NaplesItaly

Personalised recommendations