ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals

  • Volker SieberEmail author
  • Michael Hofer
  • Wolfram M. Brück
  • Daniel Garbe
  • Thomas Brück
  • Catherine A. Lynch
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Chitin is the second most abundant biopolymer on earth, next to plant-derived celluloses. It can be found in fungi, insects, and crustacean shells. The processing of crustaceans (e.g., shrimps and crabs) in the EU alone results in more than 100,000 tons of shell waste each year. Chemically, chitin is distinguished from cellulose just by an additional acetamide function on many of its 1.4-β-linked hexose monomer units. In contrast to lignocellulosic biomass and despite its unique chemical features, conversion strategies for chitin-rich biomass to value-added products are at present basically limited to chitosan utilization, although chitin has a huge potential for bio-based materials as well as chemicals. Especially for European shell waste, the high sodium carbonate content makes its usage challenging. In addition current processing methods require harsh chemical conditions. Therefore, with “ChiBio” a bio-refinery concept was recently developed within an EU-funded project, combining a sustainable chitin demineralization process by microorganisms and an enzymatic degradation of the biopolymer into its basic building blocks, N-acetylglucosamine and glucosamine. For the demineralization step, natural microbial isolates as well as Serratia spp. and Lactobacillus spp. were used in fermentations, realizing a demineralization grade of 97%. Chitin-degrading enzymes from Serratia marcescens, Amantichitinus ursilacus, and Andreprevotia ripae were overexpressed and used as enzyme cocktails to degrade chitin with yields up to 95%. The resulting monomers could finally be used for the production of novel bio-based polymers and all biological by-products accumulating in this process chain, e.g., proteins and lipids could be used as feed for biogas production. Overall, ChiBio is about novel tools, novel processes, and novel product portfolios to create value out of chitin-rich bio-waste products.


  1. 1.
    Gooday GW, Prosser JI, Hillman K, Cross MG (1991) Mineralization of chitin in an estuarine sediment: the importance of the chitosan pathway. Biochem Syst Ecol 19(5):395–400. CrossRefGoogle Scholar
  2. 2.
    Gopalan Nair K, Dufresne A (2003) Crab Shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3):657–665. CrossRefPubMedGoogle Scholar
  3. 3.
    Einbu A, Vårum KM (2008) Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules 9(7):1870–1875. CrossRefPubMedGoogle Scholar
  4. 4.
    Kikkawa Y, Tokuhisa H, Shingai H, Hiraishi T, Houjou H, Kanesato M, Imanaka T, Tanaka T (2008) Interaction force of chitin-binding domains onto chitin surface. Biomacromolecules 9(8):2126–2131. CrossRefPubMedGoogle Scholar
  5. 5.
    Sato H, Mizutani S-i, Tsuge S, Ohtani H, Aoi K, Takasu A, Okada M, Kobayashi S, Kiyosada T, Shoda S-i (1998) Determination of the degree of acetylation of chitin/chitosan by pyrolysis-gas chromatography in the presence of oxalic acid. Anal Chem 70(1):7–12. CrossRefPubMedGoogle Scholar
  6. 6.
    Global Production Statistics (1950–2014) Food and Agriculture Organization of United Nations. Accessed 27 Feb 2017
  7. 7.
    Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J Agric Food Chem 46(9):3839–3843. CrossRefGoogle Scholar
  8. 8.
    Campana-Filho SP, de Britto D, Curti E, Abreu FR (2007) Extraction, structures and properties of α- and β-Chitin. Quim Nova 30(3):644–650CrossRefGoogle Scholar
  9. 9.
    Dong Y, Xu C, Wang J, Wu Y, Wang M, Ruan Y (2002) Influence of degree of deacetylation on critical concentration of chitosan/dichloroacetic acid liquid-crystalline solution. J Appl Polym Sci 83(6):1204–1208CrossRefGoogle Scholar
  10. 10.
    Einbu A, Naess SN, Elgsaeter A, Vårum KM (2004) Solution properties of chitin in alkali. Biomacromolecules 5(5):2048–2054. CrossRefPubMedGoogle Scholar
  11. 11.
    Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59(1):117–120. CrossRefGoogle Scholar
  12. 12.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. CrossRefGoogle Scholar
  13. 13.
    Bajaj M, Winter J, Gallert C (2011) Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem Eng J 56(1–2):51–62. CrossRefGoogle Scholar
  14. 14.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014. CrossRefGoogle Scholar
  15. 15.
    Peter M, Sudheesh Kumar PT, Binulal NS, Nair SV, Tamura H, Jayakumar R (2009) Development of novel α-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohydr Polym 78(4):926–931. CrossRefGoogle Scholar
  16. 16.
    Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4(1):12–18. CrossRefPubMedGoogle Scholar
  17. 17.
    Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71(6):773–782. CrossRefPubMedGoogle Scholar
  18. 18.
    Noishiki Y, Takami H, Nishiyama Y, Wada M, Okada S, Kuga S (2003) Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4(4):896–899. CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340(11):1914–1917. CrossRefPubMedGoogle Scholar
  20. 20.
    Pantaleone D, Yalpani M, Scollar M (1992) Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res 237:325–332. CrossRefGoogle Scholar
  21. 21.
    Aquapreneur (2010) By Year 2015: global market for chitin derivatives expected to reach $63 billion/Global chitosan market could exceed $21 billion. Accessed 27 Feb 2017
  22. 22.
    Analysts GI (2014) Global chitin and chitosan market. Accessed 27 Feb 2017
  23. 23.
    Hirano S, Noishiki Y, Kinugawa J, Higashijima H, Hayashi T (1987) Chitin and chitosan for use as a novel biomedical material. In: Advances in biomedical polymers. Springer, New York, pp 285–297. CrossRefGoogle Scholar
  24. 24.
    Brandenberg G, Leibrock LG, Shuman R, Malette WG, Quigley H (1984) Chitosan: a new topical hemostatic agent for diffuse capillary bleeding in brain tissue. Neurosurgery 15(1):9–13CrossRefPubMedGoogle Scholar
  25. 25.
    Hirano S, Zhang M, Nakagawa M, Miyata T (2000) Wet spun chitosan–collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials 21(10):997–1003. CrossRefPubMedGoogle Scholar
  26. 26.
    Suzuki Y, Miyatake K, Okamoto Y, Muraki E, Minami S (2003) Influence of the chain length of chitosan on complement activation. Carbohydr Polym 54(4):465–469. CrossRefGoogle Scholar
  27. 27.
    Peña J, Izquierdo-Barba I, Martínez A, Vallet-Regí M (2006) New method to obtain chitosan/apatite materials at room temperature. Solid State Sci 8(5):513–519. CrossRefGoogle Scholar
  28. 28.
    Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226CrossRefGoogle Scholar
  29. 29.
    Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27. CrossRefGoogle Scholar
  30. 30.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52. CrossRefPubMedGoogle Scholar
  31. 31.
    Chellat F, Tabrizian M, Dumitriu S, Chornet E, Rivard C-H, Yahia L (2000) Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 53(5):592–599CrossRefPubMedGoogle Scholar
  32. 32.
    Dumitriu S (2001) Polymeric biomaterials, revised and expanded. CRC Press, Boca RatonCrossRefGoogle Scholar
  33. 33.
    Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods-a review. Food Technol Biotechnol 51(1):12Google Scholar
  34. 34.
    Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181CrossRefPubMedGoogle Scholar
  35. 35.
    Yamaguchi T, Ito Y, Shibuya N (2000) Oligosaccharide elicitors and their receptors for plant defense responses. Trends Glycosci Glycotechnol 12(64):113–120CrossRefGoogle Scholar
  36. 36.
    Debode J, De Tender C, Soltaninejad S, Van Malderghem C, Haegeman A, Van der Linden I, Cottyn B, Heyndrickx M, Maes M (2016) Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Front Microbiol 7:565. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gooday GW (1990) The ecology of chitin degradation. In: Advances in microbial ecology, vol 11. Springer, New York, pp 387–430CrossRefGoogle Scholar
  38. 38.
    Monier M (2012) Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff’s base. Int J Biol Macromol 50(3):773–781CrossRefPubMedGoogle Scholar
  39. 39.
    Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130CrossRefPubMedGoogle Scholar
  40. 40.
    Jeon C, Höll WH (2003) Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res 37(19):4770–4780CrossRefPubMedGoogle Scholar
  41. 41.
    Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203CrossRefPubMedGoogle Scholar
  42. 42.
    Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefPubMedGoogle Scholar
  43. 43.
    Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21CrossRefGoogle Scholar
  44. 44.
    Efsa Panel on Dietetic Products N, Allergies (2011) Scientific opinion on the substantiation of health claims related to chitosan and reduction in body weight (ID 679, 1499), maintenance of normal blood LDL-cholesterol concentrations (ID 4663), reduction of intestinal transit time (ID 4664) and reduction of inflammation (ID 1985) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(6):2214. CrossRefGoogle Scholar
  45. 45.
    Mhurchu CN, Poppitt S, McGill A, Leahy F, Bennett D, Lin R, Ormrod D, Ward L, Strik C, Rodgers A (2004) The effect of the dietary supplement, chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes 28(9):1149–1156CrossRefGoogle Scholar
  46. 46.
    Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Biosyst Eng 20(6):505–512CrossRefGoogle Scholar
  47. 47.
    Yamaguchi Y, Nge TT, Takemura A, Hori N, Ono H (2005) Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy. Biomacromolecules 6(4):1941–1947. CrossRefPubMedGoogle Scholar
  48. 48.
    Crini G, Guibal E, Morcellet M, Torri G, Badot P (2009) Chitine et chitosane. Préparation, propriétés et principales applications. Chitine et chitosane Du biopolymère à l’application. Presses universitaires de Franche-Comté, Besançon, pp 19–54Google Scholar
  49. 49.
    Kjartansson GT, Zivanovic S, Kristbergsson K, Weiss J (2006) Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). J Agric Food Chem 54(16):5894–5902CrossRefPubMedGoogle Scholar
  50. 50.
    Madhumathi K, Binulal N, Nagahama H, Tamura H, Shalumon K, Selvamurugan N, Nair S, Jayakumar R (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44(1):1–5CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang W, Zhang J, Jiang Q, Xia W (2013) The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydr Polym 95(1):487–491CrossRefPubMedGoogle Scholar
  52. 52.
    Bhaskar N, Suresh P, Sakhare P, Sachindra N (2007) Shrimp biowaste fermentation with Pediococcus acidilactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzym Microb Technol 40(5):1427–1434CrossRefGoogle Scholar
  53. 53.
    Prameela K, Murali M, Hemalatha K (2010) Extraction of pharmaceutically important chitin and carotenoids from shrimp biowaste by microbial fermentation method. J Pharm Res 3:2393–2395Google Scholar
  54. 54.
    Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1(3):26–27Google Scholar
  55. 55.
    Rao M, Stevens W (2005) Quality parameters of chitosan derived from fermentation of shrimp biomaterial using a drum reaction. J Chem Technol Biotechnol 80:1080–1087CrossRefGoogle Scholar
  56. 56.
    Jung W, Jo G, Kuk J, Kim Y, Oh K, Park R (2007) Production of chitin from red crab shell waste by successive fermentation with lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr Polym 68(4):746–750CrossRefGoogle Scholar
  57. 57.
    Synowiecki J, Al-Khateeb NAAQ (2000) The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem 68(2):147–152CrossRefGoogle Scholar
  58. 58.
    Kadouche S, Lounici H, Benaoumeur K, Drouiche N, Hadioui M, Sharrock P (2012) Enhancement of sedimentation velocity of heavy metals loaded hydroxyapatite using chitosan extracted from shrimp waste. J Polym Environ 20(3):848–857CrossRefGoogle Scholar
  59. 59.
    Hayes M (2012) Chitin, chitosan and their derivatives from marine rest raw materials: potential food and pharmaceutical applications. In: Hayes M (ed) Marine bioactive compounds: sources, characterization and applications. Springer, Boston, MA, pp 115–128. CrossRefGoogle Scholar
  60. 60.
    Kaur K, Dattajirao V, Shrivastava V, Bhardwaj U (2012) Isolation and characterization of chitosan-producing bacteria from beaches of Chennai, India. Enzym Res 2012:421683. CrossRefGoogle Scholar
  61. 61.
    Healy M, Romo C, Bustos R (1994) Bioconversion of marine crustacean shell waste. Resour Conserv Recycl 11(1–4):139–147CrossRefGoogle Scholar
  62. 62.
    Kaya M, Baran T, Asan-Ozusaglam M, Cakmak YS, Tozak KO, Mol A, Mentes A, Sezen G (2015a) Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol Bioprocess Eng 20(1):168–179CrossRefGoogle Scholar
  63. 63.
    Zakaria Z, Hall G, Shama G (1998) Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem 33(1):1–6CrossRefGoogle Scholar
  64. 64.
    Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37(12):1359–1366CrossRefGoogle Scholar
  65. 65.
    Healy M, Green A, Healy A (2003) Bioprocessing of marine crustacean shell waste. Acta Biotechnol 23(2–3):151–160CrossRefGoogle Scholar
  66. 66.
    Rao M, Munoz J, Stevens W (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54(6):808–813CrossRefPubMedGoogle Scholar
  67. 67.
    Cremades O, Ponce E, Corpas R, Gutierrez J, Jover M, Alvarez-Ossorio M, Parrado J, Bautista J (2001) Processing of crawfish (Procambarus clarkii) for the preparation of carotenoproteins and chitin. J Agric Food Chem 49(11):5468–5472CrossRefPubMedGoogle Scholar
  68. 68.
    Bautista J, Jover M, Gutierrez J, Corpas R, Cremades O, Fontiveros E, Iglesias F, Vega J (2001) Preparation of crayfish chitin by in situ lactic acid production. Process Biochem 37(3):229–234CrossRefGoogle Scholar
  69. 69.
    Jung W, Kuk J, Kim K, Park R (2005) Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol 67(6):851–854CrossRefPubMedGoogle Scholar
  70. 70.
    Adour L, Arbia W, Amrane A, Mameri N (2008) Combined use of waste materials—recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J Chem Technol Biotechnol 83(12):1664–1669CrossRefGoogle Scholar
  71. 71.
    Khorrami M, Najafpour G, Younesi H, Amini G (2011) Growth kinetics and demineralization of shrimp shell using Lactobacillus plantarum PTCC 1058 on various carbon sources. Iran J Ener Environ 2:320–325Google Scholar
  72. 72.
    Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotechnol 44(1):83–87Google Scholar
  73. 73.
    Oh K-T, Kim Y-J, Van Nguyen N, Jung W-J, Park R-D (2008) Effect of crab shell size on bio-demineralization with lactic acid-producing bacterium, Lactobacillus paracasei subsp. tolerans KCTC-3074. Biotechnol Bioprocess Eng 13(5):566–570CrossRefGoogle Scholar
  74. 74.
    Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342(16):2423–2429CrossRefPubMedGoogle Scholar
  75. 75.
    Wang S-L, Chio S-H (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzym Microb Technol 22(7):629–633CrossRefGoogle Scholar
  76. 76.
    Oh Y-S, Shih L, Tzeng Y-M, Wang S-L (2000) Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzym Microb Technol 27(1):3–10CrossRefGoogle Scholar
  77. 77.
    Jo G, Jung W, Kuk J, Oh K, Kim Y, Park R (2008) Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74(3):504–508CrossRefGoogle Scholar
  78. 78.
    Sorokulova I, Krumnow A, Globa L, Vodyanoy V (2009) Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. J Ind Microbiol Biotechnol 36(8):1123–1126CrossRefPubMedGoogle Scholar
  79. 79.
    Wang S-L, Kao T-Y, Wang C-L, Yen Y-H, Chern M-K, Chen Y-H (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzym Microb Technol 39(4):724–731CrossRefGoogle Scholar
  80. 80.
    Choorit W, Patthanamanee W, Manurakchinakorn S (2008) Use of response surface method for the determination of demineralization efficiency in fermented shrimp shells. Bioresour Technol 99(14):6168–6173CrossRefPubMedGoogle Scholar
  81. 81.
    Ghorbel-Bellaaj O, Jellouli K, Younes I, Manni L, Salem MO, Nasri M (2011) A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164(4):410–425CrossRefPubMedGoogle Scholar
  82. 82.
    Ali NE-H, Hmidet N, Ghorbel-Bellaaj O, Fakhfakh-Zouari N, Bougatef A, Nasri M (2011) Solvent-stable digestive alkaline proteinases from striped seabream (Lithognathus mormyrus) viscera: characteristics, application in the deproteinization of shrimp waste, and evaluation in laundry commercial detergents. Appl Biochem Biotechnol 164(7):1096–1110CrossRefGoogle Scholar
  83. 83.
    Manni L, Ghorbel-Bellaaj O, Jellouli K, Younes I, Nasri M (2010) Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotechnol 162(2):345–357CrossRefPubMedGoogle Scholar
  84. 84.
    Xu Y, Gallert C, Winter J (2008) Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microbiol Biotechnol 79(4):687–697CrossRefPubMedGoogle Scholar
  85. 85.
    Aytekin O, Elibol M (2010) Cocultivation of Lactococcus lactis and Teredinobacter turnirae for biological chitin extraction from prawn waste. Bioprocess Biosyst Eng 33(3):393–399CrossRefPubMedGoogle Scholar
  86. 86.
    Jung W, Jo G, Kuk J, Kim K, Park R (2006) Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Appl Microbiol Biotechnol 71(2):234CrossRefPubMedGoogle Scholar
  87. 87.
    Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72(12):7879–7885CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kaya M, Akyuz B, Bulut E, Sargin I, Tan G, Erdonmez D, Maheta M, Satkauskas S, Mickevičius S (2016) DNA interaction, antitumor and antimicrobial activities of three-dimensional chitosan ring produced from the body segments of a diplopod. Carbohydr Polym 146:80–89CrossRefPubMedGoogle Scholar
  89. 89.
    Kaya M, Baran T, Karaarslan M (2015b) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29(15):1477–1480CrossRefPubMedGoogle Scholar
  90. 90.
    Hoffmann K, Daum G, Köster M, Kulicke W-M, Meyer-Rammes H, Bisping B, Meinhardt F (2010) Genetic improvement of Bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular-mass chitin and chitosan. Appl Environ Microbiol 76(24):8211–8221CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO (2014) Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys 9(2):145–157CrossRefGoogle Scholar
  92. 92.
    Zhang H, Yang S, Fang J, Deng Y, Wang D, Zhao Y (2014) Optimization of the fermentation conditions of Rhizopus japonicus M193 for the production of chitin deacetylase and chitosan. Carbohydr Polym 101:57–67CrossRefPubMedGoogle Scholar
  93. 93.
    Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, Baran T (2014) Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology 133(3):285–293CrossRefGoogle Scholar
  94. 94.
    Kaya M, Erdogan S, Mol A, Baran T (2015) Comparison of chitin structures isolated from seven Orthoptera species. Int J Biol Macromol 72:797–805CrossRefPubMedGoogle Scholar
  95. 95.
    Kaya M, Seyyar O, Baran T, Turkes T (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool 11(1):59CrossRefGoogle Scholar
  96. 96.
    Kim S-K (2011) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonGoogle Scholar
  97. 97.
    Wijeweera JB, Thomas CM, Gandolfi AJ, Brendel K (1995) Sodium arsenite and heat shock induce stress proteins in precision-cut rat liver slices. Toxicology 104(1–3):35–45CrossRefPubMedGoogle Scholar
  98. 98.
    Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353. CrossRefPubMedGoogle Scholar
  99. 99.
    Mazik K, Burdon D, Elliott M (2005) Seafood-waste disposal at sea–a scientific review. Report to the sea fish industry authority. The University of Hull, HullGoogle Scholar
  100. 100.
    Lynch CA, Harkin C, McCrudden D, Brück DW, Lindorfer J, Brück WM (2016) Recovery of chitinous material from brown crab (Cancer Pagurus) shell waste using fermentation and chemical methods. J Chitin Chitosan Sci 4(1):59–68CrossRefGoogle Scholar
  101. 101.
    Harkin C, Brück W, Lynch C (2015) Isolation and identification of bacteria for the treatment of brown crab (Cancer pagurus) waste to produce chitinous material. J Appl Microbiol 118(4):954–965CrossRefPubMedGoogle Scholar
  102. 102.
    Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43(1):61–87. CrossRefPubMedGoogle Scholar
  103. 103.
    Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76(1–4):217–246CrossRefPubMedGoogle Scholar
  104. 104.
    Saleem F, Nisar U, Younas A, Jabeen F, Qazi JI, Khursheed N, Munir N, Naz S, Shakoori AR (2016) Molecular characterisation of Bacillus chitinase for bioconversion of chitin waste. Nat Prod Res 30(6):720–723CrossRefPubMedGoogle Scholar
  105. 105.
    Zhang D, Xu D-H, Qiu J, Rasmussen-Ivey CR, Liles MR, Beck BH (2016) Chitin degradation and utilization by virulent Aeromonas hydrophila strain ML10-51K. Arch Microbiol 199(4):573–579. CrossRefPubMedGoogle Scholar
  106. 106.
    Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG (2013) The chitinolytic machinery of Serratia marcescens–a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280(13):3028–3049CrossRefPubMedGoogle Scholar
  107. 107.
    Kirstahler P, Günther M, Grumaz C, Lindemann E, Rupp S, Zibek S, Sohn K (2015) Draft genome sequence of Amantichitinum ursilacus IGB-41, a new chitin-degrading bacterium. Genome Announc 3(6):e01309-01315CrossRefGoogle Scholar
  108. 108.
    Moß KS, Hartmann SC, Müller I, Fritz C, Krügener S, Zibek S, Hirth T, Rupp S (2013) Amantichitinum ursilacus gen. nov., sp. nov., a chitin-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 63(1):98–103CrossRefPubMedGoogle Scholar
  109. 109.
    Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjoras M, Eijsink VG, Sorlie M, Beckham GT, Vaaje-Kolstad G (2012) Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 287(43):36322–36330. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18CrossRefPubMedGoogle Scholar
  111. 111.
    Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1(6):580–587CrossRefPubMedGoogle Scholar
  112. 112.
    Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287CrossRefPubMedGoogle Scholar
  113. 113.
    Xu J, Du W, Zhao X, Zhang G, Liu D (2013) Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels Bioprod Biorefin 7(1):65–77CrossRefGoogle Scholar
  114. 114.
    Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, Daum C, Deshpande S, Lipzen A, Nolan M, Ohm RA, Grigoriev IV, Sun S, Heitman J, Bruck T, Nowrousian M (2015) Genomics and transcriptomics analyses of the oil-accumulating basidiomycete yeast Trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. MBio 6(4):e00918. CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gorner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Bruck T (2016) Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem 18(7):2037–2046. CrossRefGoogle Scholar
  116. 116.
    Deckelbaum RJ, Torrejon C (2012) The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 142(3):587S–591SCrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Brunner EJ, Jones PJ, Friel S, Bartley M (2009) Fish, human health and marine ecosystem health: policies in collision. Int J Epidemiol 38(1):93–100CrossRefPubMedGoogle Scholar
  118. 118.
    McDonald A, Schrattenholzer L (2001) Learning rates for energy technologies. Energ Policy 29(4):255–261CrossRefGoogle Scholar
  119. 119.
    Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41(06):1135–1153CrossRefGoogle Scholar
  120. 120.
    Gortari MC, Hours RA (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol 16(3):14–14Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Volker Sieber
    • 1
    • 2
    Email author
  • Michael Hofer
    • 1
  • Wolfram M. Brück
    • 3
  • Daniel Garbe
    • 4
  • Thomas Brück
    • 4
  • Catherine A. Lynch
    • 5
  1. 1.Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Straubing branchStraubingGermany
  2. 2.Technical University MunichMunichGermany
  3. 3.Institute of Life Technologies, University of Applied Sciences Western SwitzerlandSionSwitzerland
  4. 4.Industrial Biocatalysis Group, Technical University MunichMunichGermany
  5. 5.Letterkenny Institute of TechnologyLetterkennyIreland

Personalised recommendations