SeaBioTech: From Seabed to Test-Bed: Harvesting the Potential of Marine Biodiversity for Industrial Biotechnology

  • RuAngelie Edrada-EbelEmail author
  • Arnthor Ævarsson
  • Paraskevi Polymenakou
  • Ute Hentschel
  • Daniele Carettoni
  • John Day
  • David Green
  • Guðmundur Óli Hreggviðsson
  • Linda Harvey
  • Brian McNeil
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


SeaBioTech is an EU-FP7 project designed and driven by SMEs to create innovative marine biodiscovery pipelines as a means to convert the potential of marine biotechnology into novel industrial products for the pharmaceutical, cosmetic, aquaculture, functional food and industrial chemistry sectors. To achieve its goals, SeaBioTech brings together leading experts in biology, genomics, natural product chemistry, bioactivity testing, industrial bioprocessing, legal aspects, market analysis and knowledge exchange.

SeaBioTech targets novel marine endosymbiotic bacteria from unique and previously untapped habitats, including geothermal intertidal biotopes in Iceland, hydrothermal vent fields and deep-sea oligotrophic basins of the Eastern Mediterranean Sea and underexplored areas of Scottish coasts that are likely to be highly productive sources of new bioactive compounds. This chapter describes the 4 years of activity in the SeaBioTech project, which resulted in a robust, validated workflow suitable for evaluating unexplored activities in marine samples to prioritize potential products for a biotechnological pipeline. An improved integrated methodology involving metagenomics and metabolomics was extensively utilized to prioritize five extremophiles as potential antibiotics, anticancer drugs and novel drugs against metabolic diseases as well as new pharmaceutical excipients to the pipeline. A centralized biobank repository, which included a database of information, was established for future bioprospecting activities. For future marine bioprospecting activities, a harmonized legal position was put together in collaboration with other EU-FP7 blue biotechnology projects.



The work package leaders would like to acknowledge the post-docs, graduate and undergraduate students, research fellows and associates as well as technical assistants who have worked rigorously with SeaBioTech. Without the input of these colleagues, putting the results and legacy of SeaBioTech will not be possible.


  1. 1.
    Rothwell R (1992) Successful industrial innovation: critical factors for the 1990s. R&D Manag 22(3):221CrossRefGoogle Scholar
  2. 2.
    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1093–1101CrossRefGoogle Scholar
  3. 3.
    Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151PubMedCrossRefGoogle Scholar
  4. 4.
    Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729PubMedCrossRefGoogle Scholar
  5. 5.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  6. 6.
    Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379PubMedPubMedCentralGoogle Scholar
  7. 7.
    Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Anne Rev Microbiol 39:321–346CrossRefGoogle Scholar
  9. 9.
    Dando PR, Aliani S, Arab H, Bianchi CN, Brehmer M, Cocito S, Fowler SW, Gundersen J, Hooper LE, Kolb R, Keuver J, Linke P, Makropoulos KC, Meloni R, Miquel JC, Morri C, Muller S, Robinson C, Schlesner H, Sievert S, Stohr R, Thomm M, Varnavas SP, Ziebis W (2000) Hydrothermal studies in the Aegean Sea. Phys Chem Earth 25:1–8CrossRefGoogle Scholar
  10. 10.
    Dando PR, Hughes JA, Leahy Y, Niven SJ, Taylor LJ, Smith C (1995) Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont Shelf Res 15:913–929CrossRefGoogle Scholar
  11. 11.
    Wenzhöfer F, Holby O, Glud RN, Nielsen HK, Gundersen JK (2000) In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Mar Chem 69:43–54CrossRefGoogle Scholar
  12. 12.
    Gilhooly WP, Fike DA, Druschel GK, Kafantaris F-CA, Price RE, Amend JP (2014) Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Geochem Trans 15:12.
  13. 13.
    Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ignatiades L (1969) Annual cycle, species diversity and succession of phytoplankton in lower Saronicus Bay, Aegean Sea. Mar Biol 3:196–190CrossRefGoogle Scholar
  15. 15.
    Danovaro R, Dinet A, Duineveld G, Tselepides A (1999) Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions-Catalan Sea (wester-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Prog Oceanogr 44:287–312CrossRefGoogle Scholar
  16. 16.
    Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462PubMedCrossRefGoogle Scholar
  17. 17.
    Polymenakou PN, Lampadariou N, Mandalakis M, Tselepides A (2009) Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea. Syst Appl Microbiol 32:17–26PubMedCrossRefGoogle Scholar
  18. 18.
    Rizzo AL, Caracausi A, Chavagnac V, Nomikou P, Polymenakou PN, Mandalakis M, Kotoulas G, Magoulas A, Castillo A, Lampridou D (2016) Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Nat Sci Rep 6:28013. CrossRefGoogle Scholar
  19. 19.
    Schmitt S, Hentschel U, Taylor MW (2012) Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia 687(1):341–351CrossRefGoogle Scholar
  20. 20.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  22. 22.
    Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440PubMedCrossRefGoogle Scholar
  23. 23.
    Grozdanov L, Hentschel U (2007) An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Curr Opin Microbiol 10:215–220PubMedCrossRefGoogle Scholar
  24. 24.
    Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483PubMedCrossRefGoogle Scholar
  25. 25.
    Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33:236–255PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy J, Flemer B, Jackson SA, Lejon DP, Morrissey JP, O’Gara F, Dobson AD (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson AD (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799PubMedCrossRefGoogle Scholar
  28. 28.
    Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516PubMedCrossRefGoogle Scholar
  29. 29.
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M, Hrvatin S, Butzke D, Zimmermann K, Piel J (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, Heidelberg KB, Egan S, Steinberg PD, Kjelleberg S (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567PubMedCrossRefGoogle Scholar
  32. 32.
    Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Eloe EA, Fadrosh DW, Novotny M, Zeigler Allen L, Kim M, Lombardo MJ, Yee-Greenbaum J, Yooseph S, Allen EE, Lasken R, Williamson SJ, Bartlett DH (2011) Going deeper: metagenome of a hadopelagic microbial community. PLoS One 6:e20388PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hutchison CA III, Venter JC (2006) Single-cell genomics. Nat Biotechnol 24:657–658PubMedCrossRefGoogle Scholar
  35. 35.
    Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken RS (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U (2011) Single cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70PubMedCrossRefGoogle Scholar
  37. 37.
    Schirmer A, Hentschel U (2010) PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ Microbiol Rep 2:7CrossRefGoogle Scholar
  38. 38.
    Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Förster F, Abdelmohsen UR, Hentschel U (2016) An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol 7(1751)Google Scholar
  39. 39.
    Horn H, Cheng C, Edrada-Ebel R, Hentschel U, Abdelmohsen UR (2015) Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges. Mar Genomics 24:285–287PubMedCrossRefGoogle Scholar
  40. 40.
    Buckling A, Kassen R, Bell G, Rainey PB (2000) Disturbance and diversity in experimental microcosms. Nature 408:961–964PubMedCrossRefGoogle Scholar
  41. 41.
    Fry JC (1990) Oligotrophs. In: Edward C (ed) Microbiology of extreme environments. Open University Press, Milton Keynes, pp 93–116Google Scholar
  42. 42.
    Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedPubMedCentralGoogle Scholar
  43. 43.
    Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969PubMedPubMedCentralGoogle Scholar
  44. 44.
    Santegoeds CM, Nold SC, Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacteria mat. Appl Environ Microbiol 62:392–398Google Scholar
  45. 45.
    ZoBell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56PubMedPubMedCentralGoogle Scholar
  46. 46.
    ZoBell CE, Anderson DQ (1936) Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surface. Biol Bull 71:324–342CrossRefGoogle Scholar
  47. 47.
    Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34. PubMedCrossRefGoogle Scholar
  48. 48.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730CrossRefPubMedGoogle Scholar
  49. 49.
    Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610PubMedCrossRefGoogle Scholar
  50. 50.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefGoogle Scholar
  51. 51.
    Chabala J (1995) Solid-phase combinatorial chemistry and novel tagging methods for identifying leads. Curr Opin Biotechnol 6:632–639PubMedCrossRefGoogle Scholar
  52. 52.
    Carettoni D, Verwaerde P (2010) Enzymatic assays for high-throughput screening. WileyGoogle Scholar
  53. 53.
    Hüser J, Lohrmann E, Kalthof B, Burkhardt N, Brüeggemeier U, Bechem M (2006) High-throughput screening for targeted lead discovery. In: Hüser J (ed) High-hroughput screening in drug discovery. Wiley-VCH, Weinheim, FRG, pp 15–34CrossRefGoogle Scholar
  54. 54.
    Verkman AS (2004) Drug discovery in academia. Am J Physiol Cell Physiol 286:C465–C474PubMedCrossRefGoogle Scholar
  55. 55.
    Macarron R (2006) Critical review of the role of HTS in drug discovery. Drug Discov Today 11:277–279PubMedCrossRefGoogle Scholar
  56. 56.
    Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195PubMedCrossRefGoogle Scholar
  57. 57.
    Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10:428–438PubMedCrossRefGoogle Scholar
  58. 58.
    Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901PubMedCrossRefGoogle Scholar
  59. 59.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890PubMedCrossRefGoogle Scholar
  60. 60.
    Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588PubMedCrossRefGoogle Scholar
  61. 61.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gashaw IEP, Sommer A, Asadullahet K (2011) What makes a good drug target? Drug Discov TodayGoogle Scholar
  63. 63.
    Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12:306–317PubMedCrossRefGoogle Scholar
  64. 64.
    Grabowski K, Schneider G (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol 1:115–127Google Scholar
  65. 65.
    Kennedy J (2008) Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat Prod Rep 25:25–34PubMedCrossRefGoogle Scholar
  66. 66.
    Koehn FE (2008) High impact technologies for natural products screening. Prog Drug Res 65(175):177–210Google Scholar
  67. 67.
    Rishton G (2008) Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am J Cardiol 101:43D–49DPubMedCrossRefGoogle Scholar
  68. 68.
    Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Galeano E, Rojas JJ, Martínez A (2011) Pharmacological developments obtained from marine natural products and current pipeline perspective. Nat Prod Commun 6:287–300PubMedGoogle Scholar
  70. 70.
    Napolitano JG, Daranas AH, Norte M, Fernández JJ (2009) Marine macrolides, a promising source of antitumor compounds. Anti Cancer Agents Med Chem 9:122–137CrossRefGoogle Scholar
  71. 71.
    Mayer AM, Rodriguez AD, Berlinck RG, Fusetani N (2011) Marine pharmacology in 2007-2008: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153:191–222PubMedCrossRefGoogle Scholar
  72. 72.
    Folmer F, Jaspars M, Schumacher M, Dicato M, Diederich M (2010) Marine natural products targeting phospholipases A2. Biochem Pharmacol 80:1793–1800PubMedCrossRefGoogle Scholar
  73. 73.
    Williams P, Sorribas A, Liang Z (2010) New methods to explore marine resources for Alzheimer’s therapeutics. Curr Alzheimer Res 7:210–213PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cheng C, Balasubramanian S, Fekete A, Krischke M, Mueller MJ, Hentschel U, Oelschlaeger TA, Abdelmohsen UR (2017) Inhibitory potential of strepthonium A against Shiga toxin production in enterohemorrhagic Escherichia coli (EHEC) strain EDL933. Nat Prod Res 31(23):2818–2823. PubMedCrossRefGoogle Scholar
  75. 75.
    Cheng C, Balasubramanian S, Fekete A, Krischke M, Mueller MJ, Hentschel U, Oelschläger TA, Abdelmohsen UR (2016) Inhibitory potential of strepthonium A against Shiga toxin production in EHEC strain EDL933. Int J Med Microbiol (in revision)Google Scholar
  76. 76.
    Cheng C, Othman EM, Reimer A, Gruene M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR (2016) Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 57(25):2786–2789CrossRefGoogle Scholar
  77. 77.
    Cheng C, Othman EM, Fekete A, Krischke M, Stopper H, Edrada-Ebel R, Mueller MJ, Hentschel U, Abdelmohsen UR (2016) Strepoxazine A, a new cytotoxic phenoxazin from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 57(37):4196–4199CrossRefGoogle Scholar
  78. 78.
    Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U (2015) Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS One 10(9):e0138528. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Macintyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, Abdelmohsen UR, Gernert C, Hentschel U, Edrada-Ebel R (2014) Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs 12:3416–3448PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yuliana ND, Khatib A, Choi YH, Verpoorte R (2011) Metabolomics for bioactivity assessment of natural products. Phytother Res 25(2):157–169PubMedGoogle Scholar
  81. 81.
    Moldenhauer J, Chen XH, Borriss R, Piel J (2007) Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase of the trans-AT type. Angew Chem 46:8195–8197CrossRefGoogle Scholar
  82. 82.
    Ebada SS, Edrada-Ebel RA, Lin WH, Proksch P (2008) Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc 3:1820–1831PubMedCrossRefGoogle Scholar
  83. 83.
    Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Murata M, Oishi T, Yoshida M (2006) State-of-art methodology of marine natural products chemistry: structure determination with extremely small sample. In: Fusetani N, Clare AS (eds) Antifouling compounds (marine molecular biotechnology), vol 42. Springer, Heidelberg, pp 203–220Google Scholar
  85. 85.
    Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33:798–781PubMedCrossRefGoogle Scholar
  86. 86.
    Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11:395CrossRefGoogle Scholar
  87. 87.
    Purves K, MacIntyre L, Brennan D, Hreggviosson GO, Kuttner E, Asgeirsdottir ME, Young LC, Green DH, Edrada-Ebel R, Duncan KR (2016) Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites 6(1):2. CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Jia SR, Yu H, Lin Y, Dai Y (2007) Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture. Biotechnol Bioprocess Eng 12:271–275CrossRefGoogle Scholar
  89. 89.
    Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158PubMedCrossRefGoogle Scholar
  90. 90.
    Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances: characterization, structure and function. In: Wingender J, Neu TR, Flemming H-C (eds) . Springer, BerlinCrossRefGoogle Scholar
  91. 91.
    Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factories 5PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bae SO, Sugano Y, Ohi K, Shoda M (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotech 65:315–322CrossRefGoogle Scholar
  93. 93.
    Morea A, Mathee K, Franklin MJ, Giacominid A, O'Regane M, Ohman DE (2001) Characterization of algG encoding C5-epimerase in the alginate biosynthetic gene cluster of Pseudomonas fluorescens. Gene 278:107–114PubMedCrossRefGoogle Scholar
  94. 94.
    Tlapak-Simmons VL, Baron CA, Weigel PH (2004) Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemist 43:9234–9242CrossRefGoogle Scholar
  95. 95.
    Hreggvidsson GO, Dobruchowska JM, Fridjonsson OH, Jonsson JO, Gerwig GJ, Aevarsson A, Kristjansson JK, Curti D, Redgwell RR, Hansen C-E, Kamerling JP, Debeche-Boukhit T (2011) Exploring novel non-Leloir beta-glucosyltransferases from proteobacteria for modifying linear (beta 1 -> 3)-linked gluco-oligosaccharide chains. Glycobiology 21:304–328PubMedCrossRefGoogle Scholar
  96. 96.
    Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottir SH, Kristjansson JK (2006) Rhodothermus marinus: physiology and molecular biology. Extremophiles 10(1):1–16PubMedCrossRefGoogle Scholar
  97. 97.
    Abou Hachem M, Olsson F, Nordberg KE (2003) The modular organisation and stability of a thermostable family 10 xylanase. Biocat Biotrans 21:253–260CrossRefGoogle Scholar
  98. 98.
    Abou-Hachem M, Nordberg Karlsson E, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Crennell SJ, Hreggvidsson GO, Nordberg Karlsson E (2002) The structure of Rhodothermus marinus Cel12A, a highly thermostable family 12 endoglucanase, at 1.8 Å resolution. J Mol Biol 320:883–897PubMedCrossRefGoogle Scholar
  100. 100.
    Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68CrossRefGoogle Scholar
  101. 101.
    Gomes J, Steiner W (1998) Production of a high activity of an extremely thermostable β-mannanase by the thermophilic eubacterium Rhodothermus marinus, grown on locust bean gum. Biotechnol Lett 20:729–733CrossRefGoogle Scholar
  102. 102.
    Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049Google Scholar
  103. 103.
    Nordberg Karlsson EN, Bartonek-Roxa E, Holst O (1997) Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta 1353:118–124PubMedCrossRefGoogle Scholar
  104. 104.
    Politz O, Krah M, Thomsen KK, Borriss R (2000) A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53:715–721PubMedCrossRefGoogle Scholar
  105. 105.
    Wicher KB, Abou-Hachem M, Halldórsdóttir S, Thorbjarnadóttir SH, Eggertsson G, Hreggvidsson GO, Nordberg Karlsson E, Holst O (2001) Deletion of a cytotoxic, N-terminal putative signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus. Appl Microbiol Biotechnol 55:578–584PubMedCrossRefGoogle Scholar
  106. 106.
    Bjornsdottir SH, Fridjonsson OH, Hreggvidsson GO, Eggertsson G (2011) Generation of targeted deletions in the genome of Rhodothermus marinus. Appl Environ Microbiol 77:5505–5512. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bjornsdottir SH, Fridjonsson OH, Kristjansson JK, Eggertsson G (2007) Cloning and expression of heterologous genes in Rhodothermus marinus. Extremophiles 11:283–293PubMedCrossRefGoogle Scholar
  108. 108.
    Bjornsdottir SH, et al (2011) Construction of targeted deletions in the genome of Rhodothermus marinus. Appl Environ Microbiol (in press)Google Scholar
  109. 109.
    Bjornsdottir SH, Thorbjarnardottir SH, Eggertsson G (2005) Establishment of a gene transfer system for Rhodothermus marinus. Appl Microbiol Biotechnol 66:675–682PubMedCrossRefGoogle Scholar
  110. 110.
    Ernstsson S, Bjornsdottir SH, Jónsson ZO, Thorbjarnardottir SH, Eggertsson G, Palsdottir A (2003) Identification and nucleotide sequence analysis of a cryptic plasmid, pRM21, from Rhodothermus marinus. Plasmid 49:188–191PubMedCrossRefGoogle Scholar
  111. 111.
    Chen Z, Zhong L, Nordon A, Littlejohn D, Holden M, Fazenda M, Harvey LM, McNeil B, Faulkner J, Morris J (2011) Calibration of multiplexed fibre optic spectroscopy. Anal Chem 83:2655–2659PubMedCrossRefGoogle Scholar
  112. 112.
    El-Sabbagh N, Harvey LM, McNeil B (2008) Effects of dissolved carbon dioxide on growth, nutrient consumption, cephalosporin C synthesis and morphology of Acremonium chrysogenum in batch cultures. Enzym Microb Technol 42:315–324CrossRefGoogle Scholar
  113. 113.
    Fazenda M, Harvey LM, McNeil B (2010) Effects of dissolved oxygen on fungal morphology and process rheology during fed-batch processing of Ganoderma lucidum. J Microbiol Biotechnol 20:844–851PubMedCrossRefGoogle Scholar
  114. 114.
    Finn B, Harvey LM, McNeil B (2010) The Effect of dilution rate upon protein content and cellular amino acid profiles in chemostat cultures of Saccharomyces cerevisiae CABI 039916. Int J Food Eng 6:1–21CrossRefGoogle Scholar
  115. 115.
    Li Q, Harvey LM, McNeil B (2008) Oxygen enrichment effects on protein oxidation, proteolytic activity and the energy status of submerged batch cultures of Aspergillus niger B1-D. Proc Biochem 43:238–224CrossRefGoogle Scholar
  116. 116.
    Voulgaris I, Arnold SA, Harvey LM, McNeil B (2011) Effects of dissolved oxygen availability and culture biomass at induction upon the intracellular expression of Monoamine Oxidase by recombinant E. coli in fed batch bioprocesses. Process Biochem 46:721–729CrossRefGoogle Scholar
  117. 117.
    Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes. Mar Biotechnol 13:1–11PubMedCrossRefGoogle Scholar
  118. 118.
    Nakagawa S, Inagaki F, Takai K, Horikoshi K, Sako Y (2005) Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:599–605PubMedCrossRefGoogle Scholar
  119. 119.
    Slobodkina GB, Kolganova T, Tourova TP, Kostrikina NA, Jeanthon C, Bonch-Osmolovskaya EA, Slobodkin AI (2008) Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 58:852–855PubMedCrossRefGoogle Scholar
  120. 120.
    Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Andrianasolo EH, Haramaty L, Rosario-Passapera R, Bidle K, White E, Vetriani C, Falkowski P, Lutz R (2009) Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. J Nat Prod 72:1216–1219PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Matthews G (2008) Selection of fermentation equipment. In: McNeil B, Harvey LM (eds) Practical fermentation technology. Wiley Interscience, Chichester, pp 3–36CrossRefGoogle Scholar
  123. 123.
    Raghukumar C, Mohandass C, Cardigos F, D’Costa PM, Santos RS, Colaco A (2008) Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D. Joãode Castro Seamount, Azores in the Atlantic Ocean. Curr Sci 95:1715–1723Google Scholar
  124. 124.
    Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sato Y (2005) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs off the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933PubMedCrossRefGoogle Scholar
  125. 125.
    Andersen MR, Nielsen J (2009) Current status of systems biology in Aspergilli. Fungal Biol 46:S180–S190CrossRefGoogle Scholar
  126. 126.
    Roychoudury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117CrossRefGoogle Scholar
  127. 127.
    Leary DK (2004) Bioprospecting and the genetic resources of hydrothermal vents on the high seas: What is the existing legal position, where are we heading and what are our options? Macquarie J Int Comp Environ Law 137:137–141Google Scholar
  128. 128.
    Harvey AL, Gericke N (2011) Bioprospecting: creating a value for biodiversity. In: Pavlinov IY (ed) Biodiversity. Intech, Croatia, pp 323–338Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • RuAngelie Edrada-Ebel
    • 1
    Email author
  • Arnthor Ævarsson
    • 2
  • Paraskevi Polymenakou
    • 3
  • Ute Hentschel
    • 4
  • Daniele Carettoni
    • 5
  • John Day
    • 6
  • David Green
    • 6
  • Guðmundur Óli Hreggviðsson
    • 7
  • Linda Harvey
    • 1
  • Brian McNeil
    • 1
  1. 1.Strathclyde Institute of Pharmacy and Biomedical Sciences, University of StrathclydeGlasgowUK
  2. 2.PROKAZYMEReykjavikIceland
  3. 3.Hellenic Centre of Marine ResearchHeraklion, CreteGreece
  4. 4.Marine Microbiology Research UnitGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  5. 5.AXXAM, San Raffaele Biomedical Science ParkMilanItaly
  6. 6.Scottish Association for Marine Science, Scottish Marine InstituteDunbeg, ArgyllUK
  7. 7.MATISReykjavikIceland

Personalised recommendations