The Marine Ecosystem as a Source of Antibiotics

  • Yuly López
  • Virginio Cepas
  • Sara M. SotoEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


There has been a decline in the development of antibiotics over the past few decades. Following the discovery of penicillin in 1928, 15–20 new antibiotics were developed each decade. However, in the last 10 years, only six have been marketed. In addition to this decrease in the development of new antimicrobial agents, the number of bacteria showing multiresistance to the existing antibiotics has raised an important problem in clinical settings. There is, therefore, a need to find new molecules with antimicrobial activity. In this regard, nature is an enormous source of biodiversity and may provide us with new molecules from plants, fungi, and other macro- and microorganisms. Indeed, the seas and oceans are currently being investigated in the search for new molecules. Nowadays, about 100 million species make up the earth’s waters, and these organisms could be an important source of chemical substances active against infectious diseases.


  1. 1.
    Spellberg B, Powers JH, Brass EP, Miller LG, Edwards J Jr (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286PubMedCrossRefGoogle Scholar
  2. 2.
    Powers JH (2004) Antimicrobial drug development—the past, the present, and the future. Clin Microbiol Infect 10(Suppl 4):23–31PubMedCrossRefGoogle Scholar
  3. 3.
    Saga T, Yamaguchi K (2009) History of antimicrobial agents and resistant bacteria. Jpn Med Assoc J 52:103–108Google Scholar
  4. 4.
    Cassell GH, Mekalanos J (2001) Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA 285:601–605PubMedCrossRefGoogle Scholar
  5. 5.
    Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 28:12–22Google Scholar
  6. 6.
    Wright GD (2014) Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60:147–154PubMedCrossRefGoogle Scholar
  7. 7.
    Hughes CC, Fenical W (2010) Antibacterials from the sea. Chemistry 16:12512–12525PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95PubMedCrossRefGoogle Scholar
  10. 10.
    Supriya JS, Yogesh CS (2010) Marine: the ultimate source of bioactives and drug metabolites. Int J Res Ayurveda Pharm 1:55–62CrossRefGoogle Scholar
  11. 11.
    Leiva S, Yáñez M, Zaror L et al (2004) Actividad antimicrobiana de actinomycetes aislados desde ambientes acuáticos del sur de Chile. Rev Méd Chile 132:151–159PubMedCrossRefGoogle Scholar
  12. 12.
    Mutaz Al-Ajlani M, Hasnain S (2010) Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf Proc J 1:230–238CrossRefGoogle Scholar
  13. 13.
    Abad MJ, Bedoya LM, Bermejo P (2011) Marine compounds and their antimicrobial activities. Fortamex:1293–1306Google Scholar
  14. 14.
    Carté BK (1996) Biomedical potential of marine natural products. Bioscience 46:271–286CrossRefGoogle Scholar
  15. 15.
    Jan PA, Douglas EL (2016) Ocean sediments—an enormous but underappreciated microbial habitat. Microbe 427–437Google Scholar
  16. 16.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kumar Jha R, Zi-Rong X (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123–146CrossRefGoogle Scholar
  18. 18.
    Biswas K, Paul D, Sinha SN (2016) Marine bacteria: a potential tool for antibacterial activity. J Appl Environ Microbiol 4:25–29Google Scholar
  19. 19.
    Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40CrossRefGoogle Scholar
  20. 20.
    Jeganathan P, Rajasekaran KM, Devi NKA, Karuppusamy S (2013) Antimicrobial activity and characterization of marine bacteria. Indian J Pharm Biol Res 1:38–44CrossRefGoogle Scholar
  21. 21.
    El-Gendy MMA, Shaaban M, El-Bondkly AM, Shaaban KA (2008) Bioactive benzopyrone derivatives from new recombinant fusant of marine streptomyces. Appl Biochem Biotechnol 150:85–96PubMedCrossRefGoogle Scholar
  22. 22.
    Lu XL, Xu QZ, Shen YH et al (2008) Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Nat Prod Res 22:342–347PubMedCrossRefGoogle Scholar
  23. 23.
    Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 193:6576–6585PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    D’Alvise PW, Magdenoska O, Melchiorsen J, Nielsen KF, Gram L (2013) Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate. Environ Microbiol 16:1252–1266PubMedCrossRefGoogle Scholar
  25. 25.
    Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853PubMedCrossRefGoogle Scholar
  26. 26.
    Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiosis species. Appl Environ Microbiol 76:4969–4976PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fehér D, Barlow R, McAtee J, Hemscheidt TK (2010) Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J Nat Prod 73:1963–1966PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Isnansetyo A, Kamei Y (2009) Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int J Antimicrob Agents 34:131–135PubMedCrossRefGoogle Scholar
  29. 29.
    Andrianasolo EH, Haramaty L, Rosario-Passapera R, Vetriani C, Falkowski P, White E, Lutz R (2012) Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar Drugs 10:2300–2311PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG et al (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221PubMedCrossRefGoogle Scholar
  31. 31.
    Cetina A, Matos A, Garma G, Barba H, Vázquez R, Zepeda-Rodríguez A, Jay D, Monteón V, López AR (2010) Marine bacteria isolated from Gulf of Mexico antimicrobial activity of marine bacteria isolated from Gulf of Mexico Actividad antimicrobiana de bacterias marinas aisladas del Golfo de México. Rev Peru Biol 17:231–236Google Scholar
  32. 32.
    Lu X, Liu X, Long C et al (2011) A preliminary study of the microbial resources and their biological activities of the East china sea. Evid Based Complement Alternat Med 2011:806485PubMedPubMedCentralGoogle Scholar
  33. 33.
    Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bruhn JB, Gram L, Belas R (2007) Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol 73:442–450PubMedCrossRefGoogle Scholar
  35. 35.
    D’Alvise PW, Lillebø S, Prol-Garcia MJ, Wergeland HI, Nielsen KF, Bergh Ø, Gram L (2012) Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One 7(8):e43996PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Liu RF, Zhang DJ, Li YG et al (2010) A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helv Chim Acta 93:2419–2425CrossRefGoogle Scholar
  37. 37.
    Chen L, Wang N, Wang X, Hu J, Wang S (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101:8822–8827PubMedCrossRefGoogle Scholar
  38. 38.
    Oku N, Kawabata K, Adachi K et al (2008) Unnarmicins a and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. J Antibiot (Tokyo) 61:11–17CrossRefGoogle Scholar
  39. 39.
    Oku N, Adachi K, Matsuda S et al (2008) Ariakemicins a and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org Lett 10:2481–2484PubMedCrossRefGoogle Scholar
  40. 40.
    Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine of marine ascomycota, anamorphic taxa and basidiomycota. Fungal Divers 35:1–187Google Scholar
  41. 41.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New YorkGoogle Scholar
  42. 42.
    Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112CrossRefGoogle Scholar
  43. 43.
    Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 102:513–521PubMedCrossRefGoogle Scholar
  44. 44.
    Zhou S, Wang M, Feng Q, Lin Y, Zhao H (2016) A study on biological activity of marine fungi from different habitats in coastal regions. SpringerPlus 5:1966PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Prompanya C, Dethoup T, Bessa L, Pinto M, Gales L, Costa P, Silva A, Kijjoa A (2014) New Isocoumarin derivatives and Meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013. Mar Drugs 12:5160–5173PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Liu F, Xia J, Wang W (2013) Isolation and identification of two terphenyl compounds from Aspergillus candidus metabolites. J Xiamen Univ 52:670–674Google Scholar
  47. 47.
    Fredimoses M, Zhou X, Lin X, Tian X, Ai W, Wang J, Liao S, Liu J, Yang B, Yang X (2014) New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 12:3190–3202PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bai ZQ, Lin X, Wang Y, Wang J, Zhou X, Yang B, Liu J, Yang X, Wang Y, Liu Y (2014) New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 95:194–202PubMedCrossRefGoogle Scholar
  49. 49.
    Li C, Blencke HM, Haug T, Jorgensen O, Stensvag K (2014) Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Dev Comp Immunol 43:106–113PubMedCrossRefGoogle Scholar
  50. 50.
    Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784CrossRefGoogle Scholar
  51. 51.
    Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL (2017) World Porifera Database. Accessed 1 Feb 2017
  52. 52.
    Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353CrossRefGoogle Scholar
  53. 53.
    Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL (2011) World Porifera Database. Accessed 1 Feb 2017
  54. 54.
    Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol (9):641–654PubMedCrossRefGoogle Scholar
  55. 55.
    Mayer AMS, Rodríguez AD, Taglia-latela-Scafati O, Fusetani N (2013) Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11(7):2510–2573PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2016) Marine natural products. Nat Prod Rep 3:382–431CrossRefGoogle Scholar
  57. 57.
    Cheuka P, Mayoka G, Mutai P, Chibale K (2016) The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 22:58CrossRefGoogle Scholar
  58. 58.
    Urban S, de Almeida LP, Carroll AR, Fechner GA, Smith J, HooperJNA QRJ (1999) Axinellamines A−D, novel imidazo−azolo−imidazole alkaloids from the Australian marine sponge Axinella sp. OrgChem 64:731–735Google Scholar
  59. 59.
    Chen C, Ma Z, Wang X, Ma Y (2016) Asymmetric synthesis of axinellamines a and B. Angew Chem Int Ed 55:4763–4766CrossRefGoogle Scholar
  60. 60.
    Zidar N, Montalvão S, Hodnik Z, Nawrot DA, Žula A, Ilaš J, Kikelj D, Tammela P, Mašič LP (2014) Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar Drugs 12(2):940–963PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Melander RJ, Liu HB, Stephens MD, Bewley CA, Melander C (2016) Marine sponge alkaloids as a source of anti-bacterial adjuvants. Bioorg Med Chem Lett 26(24):5863–5866PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang Z (2011) Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa 3148:7–12Google Scholar
  63. 63.
    Crossland CJ, Hatcher BG, Smith SV (1991) Role of coral reefs in global ocean production. Coral Reefs 10:55CrossRefGoogle Scholar
  64. 64.
    Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123(1):23–42CrossRefGoogle Scholar
  65. 65.
    Mariottini GL (2014) Hemolytic venoms from marine cnidarian jellyfish—an overview. J Venom Res 5:22–32PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ospina CA, Rodríguez AD, Zhao H, Raptis RG (2007) Bipinnapterolide B, a bioactive oxapolycyclic diterpene from the Colombian gorgonian coral Pseudopterogorgia bipinnata. Tetrahedron Lett 48:7520–7523CrossRefGoogle Scholar
  67. 67.
    Bishara A, Rudi A, Goldberg I, Benayahu Y, Kashman Y (2006) Novaxenicins A–D and xeniolides I–K, seven new diterpenes from the soft coral Xenia novaebrittanniae. Tetrahedron 62:12092–12097CrossRefGoogle Scholar
  68. 68.
    McCulloch MWB, Haltli B, Marchbank DH, Kerr RG (2012) Evaluation of pseudopteroxazole and pseudopterosin derivatives against Mycobacterium tuberculosis and other pathogens. Mar Drugs 10:1711–1728PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ata A, Win HY, Holt D, Holloway P, Segstro EP, Jayatilake GS (2004) New antibacterial diterpenes from Pseudopterogorgia elisabethae. Helv Chim Acta 87:1090–1098CrossRefGoogle Scholar
  70. 70.
    Rodríguez II, Rodríguez AD (2003) Homopseudopteroxazole, a new antimycobacterial diterpene alkaloid from Pseudopterogorgia elisabethae. J Nat Prod 66(6):855–857PubMedCrossRefGoogle Scholar
  71. 71.
    Correa H, Aristizabal F, Duque C, Kerr R (2011) Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia Elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar Drugs 9(3):334–343PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wei MY, Wang CY, Liu QA, Shao CL, She ZG, Lin YC (2010) Five ses-quiterpenoids from a marine-derived fungus Aspergillus sp. isolated from a gorgonian Dichotella gemmacea. Mar Drugs 8(4):941–949PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    El Sayed KA, Bartyzel P, Shen X, Perry TL, Zjawiony JK, Hamann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953CrossRefGoogle Scholar
  74. 74.
    Liang LF, Lan LF, Taglialatela-Scafati O, Guo YW (2013) Sartrolides AeG and bissartrolide, new cembranolides from the South China Sea soft coral Sarcophyton trocheliophorum Marenzeller. Tetrahedron 69:7381–7386CrossRefGoogle Scholar
  75. 75.
    Shenkarev ZO, Panteleev PV, Balandin SV, Gizatullina AK, Altukhov DA, Finkina EI, Kokryakov VN, Arseniev AS, Ovchinnikova TV (2012) Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem Biophys Res Commun 429:63–69PubMedCrossRefGoogle Scholar
  76. 76.
    Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, Gutsmann T, Hammer MU, Podschun R, Bonvin AM, Leippe M, Bosch T, Grötzinger J (2009) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan hydra. J Biol Chem 284(3):1896–1905PubMedCrossRefGoogle Scholar
  77. 77.
    Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M et al (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569PubMedCrossRefGoogle Scholar
  78. 78.
    Augustin R, Anton-Erxleben F, Jungnickel S et al (2009) Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents Chemother 53(12):5245–5250PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Augustin R, Siebert S, Bosch T (2009) Identification of a kazal-type serine pro-tease inhibitor with potent anti-staphylococcal activity as part of Hydra’s in-nate immune system. Dev Comp Immunol 33:830–837PubMedCrossRefGoogle Scholar
  80. 80.
    Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. Zootaxa 3703(1):67–74CrossRefGoogle Scholar
  81. 81.
    Gordon DP (1987) The deep-sea Bryozoa of the New Zealand region. In: Ross JRP (ed) Bryozoa: present and past western. Washington University, Bellingham, pp 97–104Google Scholar
  82. 82.
    Figuerola B, Sala-Comorera L, Angulo-Preckler C, Vázquez J, Montes MJ, García-Aljaro C, Mercadé E, Blanch AR, Avila C (2014) Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications. Mar Environ Res 101:52–59PubMedCrossRefGoogle Scholar
  83. 83.
    Prinsep M, Yao B, Nicholson B, Gordon DP (2004) The pterocellins, bioactive alkaloids from the marine bryozoan Pterocella vesiculosa. Phytochem Rev 3:325–331CrossRefGoogle Scholar
  84. 84.
    Till M, Prinsep MR (2009) 5-Bromo-8-methoxy-1-methyl-β-carboline, an alkaloid from the New Zealand marine bryozoan Pterocella vesiculosa. J Nat Prod 72:796–798PubMedCrossRefGoogle Scholar
  85. 85.
    Tadesse M, Tabudravu JN, Jaspars M, Strom MB, Hansen E, Andersen JH, Kristiansen PE, Haug T (2011) The antibacterial ent-eusynstyelamide B and eusynstyelamides D, E, and F from the arctic bryozoan Tegella cf. spitzbergensis. J Nat Prod 74:837–841PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Brusca RC, Brusca GJ, Martínez FP (2005) Invertebrados. McGraw-Hill, MadridGoogle Scholar
  87. 87.
    Periyasamy N, Srinivasan M, Balakrishnan S (2012) Antimicrobial activities of the tissue extracts of Babylonia spirata Linnaeus, 1758 (Mollusca: Gastropoda) from Thazhanguda, southeast coast of India. Asian Pac J Trop Biomed 2:36–40PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology: a functional evolutionary approach. Syst Biol 53:662–664CrossRefGoogle Scholar
  89. 89.
    Dakhil DZ, Tahar AA (2010) Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria. Thi-Qar Med J 4:142–147Google Scholar
  90. 90.
    Schmutterer H (2005) Mollusca, molluscs. In: Schmutterer H (ed) Neem tree source unique natural. Products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, pp 151–152Google Scholar
  91. 91.
    Sarumathi G, Arumugam M, Kumaresan S, Balasubramanian T (2012) Studies on bioprospecting potential of a gastropod mollusc Cantharus tranquebaricus (Gmelin, 1791). Asian Pac J Trop Biomed 2:759–764PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    He JY, Chi CF, Liu HH (2014) Identification and analysis of an intracellular cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd2+. Dev Comp Immunol 47:1–5PubMedCrossRefGoogle Scholar
  93. 93.
    He X, Hwang H-M, Aker WG, Wang P, Lin Y, Jiang X, He X (2014) Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiol Res 169:759–767PubMedCrossRefGoogle Scholar
  94. 94.
    Datta D, Nath Talapatra S, Swarnakar S (2015) Bioactive compounds from marine invertebrates for potential medicines—an overview. Int Lett Nat Sci 7:42–61Google Scholar
  95. 95.
    Gustafson K, Andersen RJ (1985) Chemical studies of British columbia nudibranchs. Tetrahedron 41:1101–1108CrossRefGoogle Scholar
  96. 96.
    Kiran N, Siddiqui G, Khan AN, Ibrar K, Tushar P (2014) Extraction and screening of bioactive compounds with antimicrobial properties from selected species of mollusk and crustacean. J Clin Cell Immunol 5:1–5Google Scholar
  97. 97.
    De Petrocellis L, Orlando P, Pierobon P, De Falco M, Ruggiero AM, Stefano GS, Tino A, Grippo P (1999) Kelletinin a, from the marine mollusc Buccinulum corneum, promotes differentiation in Hydra vulgaris. Res Commun Mol Pathol Pharmacol 103:17–28PubMedGoogle Scholar
  98. 98.
    Orlando P, Carretta F, Grippo P, Cimino G, De Stefano S, Strazzullo G (1991) Kelletinin I and kelletinin a from the marine mollusc Buccinulum corneum are inhibitors of eukaryotic DNA polymerase alpha. Experientia 47:64–66PubMedCrossRefGoogle Scholar
  99. 99.
    Anbuselvi S, Chellaram C, Jonesh S, Jayanthi L, Edward JKP (2009) Bioactive potential of coral associated gastropod, Trochus tentorium of Gulf of Mannar, southeastern India. J Med Sci 9:240–244CrossRefGoogle Scholar
  100. 100.
    Vino AB, Shanmugam V, Shanmugam A (2014) Antimicrobial activity of methanolic extract and fractionated polysaccharide from Loligo duvauceli Orbingy 1848 and Doryteuthis sibogae Adam 1954 on human pathogenic microorganisms. Afr J Microbiol Res 8:230–236CrossRefGoogle Scholar
  101. 101.
    Shanmugam A, Amalraj T, Gnanasekar Devanathan CP, Balasubramanian T (2008) Antimicrobial activity of sulfated mucopolysaccharides [heparin and heparin-like glycosaminoglycans (GAGs)] from Cuttlefish Euprymna Berryi Sasaki, 1929. Trends Appl Sci Res 3:97–102CrossRefGoogle Scholar
  102. 102.
    Kanagasabapathy S, Samuthirapandian R, Kumaresan M (2011) Preliminary studies for a new antibiotic from the marine mollusk Melo melo (Lightfoot, 1786). Asian Pac J Trop Med 4:310–314PubMedCrossRefGoogle Scholar
  103. 103.
    Dolashka P, Dolashki A, Voelter W, Van Beeumen J, Stevanovic S (2015) Antimicrobial activity of peptides from the hemolymph of Helix lucorum snails. Int J Curr Microbiol App Sci 4:1061–1071Google Scholar
  104. 104.
    Dolashka P, Moshtanska V, Borisova V, Dolashki A, Stevanovic S, Dimanov T, Voelter W (2011) Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 32:1477–1483PubMedCrossRefGoogle Scholar
  105. 105.
    Castillo MG, Salazar KA, Joffe NR (2015) The immune response of cephalopods from head to foot. Fish Shellfish Immunol 46:145–160PubMedCrossRefGoogle Scholar
  106. 106.
    Boyle P, Rodhouse P (2007) Cephalopods: ecology and fisheries. Wiley, OxfordGoogle Scholar
  107. 107.
    Rajasekharan Nair J, Pillai D, Joseph SM et al (2011) Cephalopod research and bioactive substances. Indian J Mar Sci 40:13–27Google Scholar
  108. 108.
    Ramasamy P, Subhapradha N, Srinivasan A et al (2011) In vitro evaluation of antimicrobial activity of methanolic extract from selected species of cephalopods on clinical isolates. Afr J Microbiol Res 5:3884–3889CrossRefGoogle Scholar
  109. 109.
    Shanmugam A, Mahalakshmi TS, Barwin Vino A (2008) Antimicrobial activity of polysaccharide isolated from the cuttlebone of Sepia aculeata (Orbingy, 1848) and Sepia brevimana (Steenstrup, 1875): an approach to selected antimicrobial activity for human pathogenic microorganisms. Fish Aquat Sci 3:268–274CrossRefGoogle Scholar
  110. 110.
    Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biol Int 33:3–16Google Scholar
  111. 111.
    Nosrati H, Nosrati M, Karimi R (2013) The phylum annelida: a short introduction. Agric Sci Dev 2:28–30Google Scholar
  112. 112.
    Cuvillier-Hot V, Boidin-Wichlacz C, Tasiemski A (2014) Polychaetes as annelid models to study ecoimmunology of marine organisms. J Mar Sci Technol 22:9–14Google Scholar
  113. 113.
    Otero-González AJ, Magalhães BS, Garcia-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, Franco OL (2010) Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24:1320–1334PubMedCrossRefGoogle Scholar
  114. 114.
    Tasiemski A (2008) Antimicrobial peptides in annelids. Invertebr Surviv J 5:75–82Google Scholar
  115. 115.
    Maltseva AL, Kotenko ON, Kokryakov VN, Starunov VV, Krasnodembskaya AD (2014) Expression pattern of arenicins-the antimicrobial peptides of polychaete Arenicola marina. Front Physiol 5:1–11CrossRefGoogle Scholar
  116. 116.
    Anderson RS, Chain BM (1982) Antibacterial activity in the coelomic fluid of a marine annelid, Glycera dibranchiata. J Invertebr Pathol 40:320–326CrossRefGoogle Scholar
  117. 117.
    Chain BM, Anderson RS (1983) Antibacterial of the coelomic fluid from the polichaeta, Glycera dibranchiata. II. Partial purification and biochemical characterization of the active factor. Biol Bull 164:41–49CrossRefGoogle Scholar
  118. 118.
    Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization. J Biochem 135:297–304PubMedCrossRefGoogle Scholar
  119. 119.
    Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214PubMedCrossRefGoogle Scholar
  120. 120.
    Tasiemski A, Schikorski D, Le Marrec-Croq F, Pontoire-Van Camp C, Boidin-Wichlacz C, Sautière PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31:749–762PubMedCrossRefGoogle Scholar
  121. 121.
    Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184PubMedCrossRefGoogle Scholar
  122. 122.
    Zhou Q, Li M, Xi T (2009) Cloning and expression of a clamworm antimicrobial peptide perinerin in Pichia pastoris. Curr Microbiol 58:384–388PubMedCrossRefGoogle Scholar
  123. 123.
    Elayaraja S, Murugesan P, Vijayalakshmi S, Balasubramanian T (2010) Antibacterial and antifungal activities of polychaete Perinereis cultrifera. Indian. J Mar Sci 39:257–261Google Scholar
  124. 124.
    El-Gamal MI, Abdel-Maksoud MS, CH O (2013) Recent advances in the research and development of marine antimicrobial peptides. Curr Top Med Chem 13:2026–2033PubMedCrossRefGoogle Scholar
  125. 125.
    Kondo M, Akasaka K (2012) Current status of echinoderm genome analysis—what do we know? Curr Genomics 13:134–143PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Li C, Blencke HM, Haug T, Stensvåg K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49:190–197PubMedCrossRefGoogle Scholar
  127. 127.
    Motuhi S-E, Mehiri M, Payri C et al (2016) Marine natural products from new Caledonia—a review. Mar Drugs 14:58PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Uthicke S, Schaffelke B, Byrne M (2009) A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24CrossRefGoogle Scholar
  129. 129.
    Li C, Haug T, Stensvåg K (2010) Antimicrobial peptides in Echinoderms. Invertebr Surviv J 7:132–140CrossRefGoogle Scholar
  130. 130.
    Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvåg K, Haug T (2016) Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible sea urchin Echinus esculentus have 6-br-trp post-translational modifications. PLoS One 11:1–25CrossRefGoogle Scholar
  131. 131.
    Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 198:10–24PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Adibpour N, Nasr F, Nematpour F, Shakouri A, Ameri A (2014) Antibacterial and antifungal activity of Holothuria leucospilota isolated from Persian gulf and Oman Sea. Jundishapur J Microbiol 7:1–4CrossRefGoogle Scholar
  133. 133.
    García-arrarás JE, Ramirez-gomez FJ (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220Google Scholar
  134. 134.
    Abubakar L, Mwangi C, Uku J, Ndirangu S (2012) Antimicrobial activity of various extracts of the sea urchin Tripneustes gratilla (Echinoidea). Afr J Pharmacol Ther 1:19–23Google Scholar
  135. 135.
    Canicatti C, Roch P (1989) Studies on Holothuria polk (Eehinodermata) antibacterial proteins. I. Evidence for and activity of a coelomocyte lysozyme. Experientia 45:756–759CrossRefGoogle Scholar
  136. 136.
    Stabili L, Licciano M, Pagliara P (1994) Evidence of antibacterial and lysozyme-like activity in different planktonic larval stages of Paracentrotus lividus. Mar Biol 119:501–505CrossRefGoogle Scholar
  137. 137.
    Leonard LA, Strandberg JD, Winkelstein JA (1990) Complement-like activity in the sea star, Asterias forbesi. Dev Comp Immunol 14:19–30PubMedCrossRefGoogle Scholar
  138. 138.
    Beauregard KA, Truong NT, Zhang H, Lin W, Beck G (2001) The detection and isolation of a novel antimicrobial peptide from the Echinoderm Cucumaria Frondosa. In: Beck G, Sugumaran M, Cooper EL (eds) Phylogenetic perspectives on the vertebrate immune system. Springer US, Boston, pp 55–62CrossRefGoogle Scholar
  139. 139.
    Service M, Wardlaw AC (1984) Echinochrome-a as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol B Biochem 79:161–165CrossRefGoogle Scholar
  140. 140.
    Ageenko NV, Kiselev KV, Dmitrenok PS, Odintsova NA (2014) Pigment cell differentiation in sea urchin blastula-derived primary cell cultures. Mar Drugs 12:3874–3891PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Li C, Haug T, Styrvold OB, Jørgensen TØ, Stensvåg K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, li. Dev Comp Immunol 32:1430–1440PubMedCrossRefGoogle Scholar
  142. 142.
    Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K (2010) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 34:959–968PubMedCrossRefGoogle Scholar
  143. 143.
    Björn C, Håkansson J, Myhrman E, Sjöstrand V, Haug T, Lindgren K, Blencke HM, Stensvåg K, Mahlapuu M (2012) Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Exp 2:67CrossRefGoogle Scholar
  144. 144.
    Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, Muccilli V, Cunsolo V, Haagensen JJA, Molin S (2010) Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 108:17–24PubMedCrossRefGoogle Scholar
  145. 145.
    Stabili L, Pagliara L, Roch P (1996) Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol B 113:639–644PubMedCrossRefGoogle Scholar
  146. 146.
    Zou Z, Yi Y, Wu H et al (2005) Intercedensides D-I, cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens lampert. J Nat Prod 68:540–546PubMedCrossRefGoogle Scholar
  147. 147.
    Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen ØM, Stensvåg K (2002) Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol 81:94–102PubMedCrossRefGoogle Scholar
  148. 148.
    Wang H, Liu Y, Li M, Huang H, Xu HM, Hong RJ, Shen H (2010) Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169Google Scholar
  149. 149.
    Pereira DM, Valento P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigments 111:124–134CrossRefGoogle Scholar
  150. 150.
    Babenkova IV, Teselkin IO, Makashova NV, Guseva MR (1999) Antioxidative activity of histochrome and some other drugs used in ophthalmology. Vestn Oftalmol 115:22–24PubMedGoogle Scholar
  151. 151.
    Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024PubMedCrossRefGoogle Scholar
  152. 152.
    Schillaci D, Cusimano MG, Russo D, Arizza V (2014) Antimicrobial peptides from echinoderms as antibiofilm agents: a natural strategy to combat bacterial infections. Ital J Zool 81:312–321CrossRefGoogle Scholar
  153. 153.
    Chen JY, Huang DY, Peng QQ, Chi HM, Wang XQ, Feng M (2003) The first tunicate from the early Cambrian of South China. Proc Natl Acad Sci USA 100:8314–8318PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Stolfi A, Brown F (2015) Evolutionary developmental biology of invertebrates 6: Deuterostomia. Springer, Vienna, pp 135–204CrossRefGoogle Scholar
  155. 155.
    Sings H, Rinehart K (1996) Compounds produced from potential tunicate-blue-green algal symbiosis: a review. J Ind Microbiol 17:385–396Google Scholar
  156. 156.
    Yankova L (2014) Chemical profiling and biological activity of two tunicate-associated marine bacteria. Honors Scholar Theses, p 336Google Scholar
  157. 157.
    Aassila H, Bourguet-Kondracki ML, Rifai S, Fassouane A, Guyot M (2003) Identification of Harman as the antibiotic compound produced by a tunicate-associated bacterium. Mar Biotechnol 5:163–166PubMedCrossRefGoogle Scholar
  158. 158.
    Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, McPhail KL (2012) Antimicrobial rubrolides from a south African species of Synoicum tunicate. J Nat Prod 75:1824–1827PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Karak M, Acosta JAM, Barbosa LCA, Boukouvalas J (2016) Late-stage bromination enables the synthesis of rubrolides B, I, K, and O. Eur J Org Chem 22:1099–0690Google Scholar
  160. 160.
    Bontemps N, Bry D, López-Legentil S, Simon-Levert A, Long C, Banaigs B (2010) Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. J Nat Prod 73:1044–1048PubMedCrossRefGoogle Scholar
  161. 161.
    Tadesse M, Strøm MB, Svenson J, Jaspars M, Milne BF, Tørfoss V, Andersen JH, Hansen E, Stensvåg K, Haug T (2010) Synoxazolidinones A and B: novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org Lett 12:4752–4755PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI (2000) Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275:38417–38426PubMedCrossRefGoogle Scholar
  163. 163.
    Woong SJ, Kyu NK, Young SL, Myung HN, In HL (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521:81–86CrossRefGoogle Scholar
  164. 164.
    Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS (2012) Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J Nat Prod 75:735–740PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Weber T, Laiple KJ, Pross EK, Textor A, Grond S, Welzel K, Pelzer S, Vente A, Wohlleben W (2008) Molecular analysis of the kirromycin biosynthetic gene cluster revealed β-alanine as precursor of the pyridone moiety. Chem Biol 15:175–188PubMedCrossRefGoogle Scholar
  166. 166.
    Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14(81):1–23Google Scholar
  167. 167.
    Blunt JW, Munro MHG, Copp BR, Keyzers RA, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211PubMedCrossRefGoogle Scholar
  168. 168.
    Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146(1–2):60–78PubMedCrossRefGoogle Scholar
  169. 169.
    Holanda ML, Melo VM, Silva LM, Amorim RC, Pereira MG, Benevides NM (2005) Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz J Med Biol Res 38:1769–1773PubMedCrossRefGoogle Scholar
  170. 170.
    Lee SH, Kim SK (2015) Biological phlorotannins of Eisenia bicyclis. In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, Oxford, pp 453–464Google Scholar
  171. 171.
    Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA (2015) Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 20:89–97PubMedCrossRefGoogle Scholar
  172. 172.
    Kadam SU, O’Donnell CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK (2015) Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria Hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Deyab MA, Abou-Dobara MI (2013) Antibacterial activity of some marine algal extracts against most nosocomial bacterial infections. Egypt J Exp Biol 9:281–286Google Scholar
  174. 174.
    Rajauria G, Abu-Ghannam N (2013) Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata Brown seaweed: a TLC-based approach. Int J Anal Chem 2013:802573PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472PubMedCrossRefGoogle Scholar
  176. 176.
    Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Maugard T (2011) Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioprocess Eng 16:937–945CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de BarcelonaBarcelonaSpain

Personalised recommendations