Skip to main content

Self-Consistent Numerical Model

  • Chapter
  • First Online:

Abstract

In the development of a new technology, the availability of a tool able to simulate the cell behavior is key for proper device engineering. However, as extensively discussed in Chaps. 2 and 3, the main physical ingredients at the basis of PCM operation are uncommon for conventional electronics, and the available commercial tools cannot be thus employed. In this chapter, a numerical model will be described that couples the conduction properties of crystalline and amorphous Ge2Sb2Te5 (including the threshold switching) with a local nucleation and growth algorithm to account for the phase transition dynamics. The proposed model can simulate three-dimensional PCM devices, and it is capable to quantitatively reproduce the key features of chalcogenide physics when integrated in an electronic memory cell. More detailed material can be found in the original paper which is partially reproduced here with permission from A. Redaelli A. P. (J Appl Phys – Appl Phys Rev 103(111101), 2008); copyright AIP Publishing LLC 2008.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. A.C. Faleiros et al., Mater. Res. 3(3), 51 (2000)

    Article  Google Scholar 

  2. A.E. Owen, J.M. Robertson, IEEE Trans. Electron Devices 20(2), 105 (1973)

    Article  Google Scholar 

  3. A.E. Owen et al., J. Non-Cryst. Solids 32(1-3), 29 (1979)

    Article  Google Scholar 

  4. A. Kolobov et al., Appl. Phys. Lett. 91(2), 021911 (2007)

    Article  Google Scholar 

  5. A.L. Lacaita et al., IEEE IEDM Tech. Dig. 911 (2004)

    Google Scholar 

  6. A. Pirovano et al., IEEE IEDM Tech. Dig. 699 (2003)

    Google Scholar 

  7. A. Pirovano et al., IEEE Trans. Electron Devices 51(3), 452–459 (2004a)

    Article  Google Scholar 

  8. A. Pirovano et al., IEEE Trans. Electron Devices 51(5), 714–719 (2004b)

    Article  Google Scholar 

  9. A. Pirovano et al., IEEE Trans. Device Mater. Reliab 4(3), 422–427 (2004c)

    Article  Google Scholar 

  10. A. Redaelli et al., IEEE Electron Device Lett 25(10), 684–686 (2004)

    Article  Google Scholar 

  11. A. Redaelli et al., IEEE IEDM Tech. Dig. 761 (2005a)

    Google Scholar 

  12. A. Redaelli et al., SISPAD Proc. 279–281 (2005b)

    Google Scholar 

  13. A. Redaelli et al., J. Appl. Phys. 103, 111101 (2008)

    Article  Google Scholar 

  14. A. Redaelli et al., IEEE Trans. Electron Devices 53(12), 3040–3046 (2006)

    Article  Google Scholar 

  15. E.J. Yoffa, D. Adler, Phys. Rev. B 15, 2311 (1977)

    Article  Google Scholar 

  16. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  Google Scholar 

  17. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  Google Scholar 

  18. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  Google Scholar 

  19. B.S. Lee et al., J. Appl. Phys. 97, 093509 (2005)

    Article  Google Scholar 

  20. C.N. Afonso et al., Appl. Phys. Lett. 60, 3123 (1992)

    Article  Google Scholar 

  21. C. Peng et al., J. Appl. Phys. 82, 4183 (1997)

    Article  Google Scholar 

  22. S. Caravati et al., Appl. Phys. Lett. 91, 171906 (2007)

    Article  Google Scholar 

  23. C. Jacoboni et al., Solid State Electron. 84, 90–95 (2013)

    Article  Google Scholar 

  24. J.W. Christian, The Theory of Transformation in Metals and Alloys (Oxford, Pergamon, 1965)

    Google Scholar 

  25. Y. Okuto, C.R. Crowell, Solid State Electron. 18, 161–168 (1975)

    Article  Google Scholar 

  26. D. Adler et al., Rev. Mod. Phys. 50, 209 (1978)

    Article  Google Scholar 

  27. D. Adler et al., J. Appl. Phys. 51, 3289 (1980)

    Article  Google Scholar 

  28. D. Ielmini, Y. Zhang, IEEE IEDM Tech. Dig. 401 (2006)

    Google Scholar 

  29. D. Turnbull, M. Cohen, J. Chem. Phys. 34, 120 (1961)

    Article  Google Scholar 

  30. E. Piccinini et al., J. Appl. Phys. 112, 083722 (2012)

    Article  Google Scholar 

  31. E. Piccinini et al., Appl. Phys. Lett. 104, 022101 (2014)

    Article  Google Scholar 

  32. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

    Article  Google Scholar 

  33. G.C. Sosso et al., Phys. Status Solidi B 249(10), 1880–1885 (2012)

    Article  Google Scholar 

  34. G. Wicker, A Comprehensive Model of Submicron Chalcogenide Switching Devices (Wayne State University, Ph.D Thesis, 1996)

    Google Scholar 

  35. G.C. Sosso et al., J. Phys. Chem. B 118(47), 13621–13628 (2014)

    Article  Google Scholar 

  36. H. Fritzsche, S.R. Ovshinsky, J. Non-Cryst. Solids 2, 393 (1970)

    Article  Google Scholar 

  37. H. Iwasaki et al., Jpn. J. Appl. Phys. 32(1), 5241 (1993)

    Article  Google Scholar 

  38. I. Friedrich et al., J. Appl. Phys. 87, 4130 (2000)

    Article  Google Scholar 

  39. D. Ielmini, Phys. Rev. B 78, 035308 (2008)

    Article  Google Scholar 

  40. J.C. Fisher et al., J. Appl. Phys. 19, 775 (1948)

    Article  Google Scholar 

  41. J. Coombs et al., J. Appl. Phys. 78, 4906 (1995a)

    Article  Google Scholar 

  42. J. Coombs et al., J. Appl. Phys. 78, 4918 (1995b)

    Article  Google Scholar 

  43. J. Kalb et al., J. Appl. Phys. 93, 2389 (2003)

    Article  Google Scholar 

  44. J. Park et al., Jpn. J. Appl. Phys. Part 1 38, 4775 (1999)

    Article  Google Scholar 

  45. J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)

    Article  Google Scholar 

  46. K. Yusu et al., Proc. EPCOS (2005)

    Google Scholar 

  47. M. Kastner, Phys. Rev. Lett. 28, 355 (1972)

    Article  Google Scholar 

  48. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1976)

    Article  Google Scholar 

  49. N. Kolmogorov, Biol. Bull. Acad. Sci. USSR 3, 3551 (1937)

    Google Scholar 

  50. A. Kolobov et al., Nat. Mater. 3, 703–708 (2004)

    Article  Google Scholar 

  51. E.R. Meinders, M.H.R. Lankhorst, Jpn. J. Appl. Phys. 42(Part 1, Number 2B), 809 (2003)

    Article  Google Scholar 

  52. M. Chen et al., Appl. Phys. Lett. 49, 502 (1986)

    Article  Google Scholar 

  53. M.H. Cohen et al., Phys. Rev. Lett. 22, 1065 (1969)

    Article  Google Scholar 

  54. M.H.R. Lankhorst et al., Jpn. J. Appl. Phys. 42(Part 1, Number 2B), 863 (2003)

    Article  Google Scholar 

  55. M. Simon et al., J. Appl. Phys. 108, 064514 (2010)

    Article  Google Scholar 

  56. M.V. Barsoum et al., J. Appl. Phys. 87, 8407 (2000)

    Article  Google Scholar 

  57. M. Wuttig, N. Yamada, Nat. Mater. 6, 824–832 (2007)

    Article  Google Scholar 

  58. M. Rudan et al., IEEE Trans. Electron Devices 58(12), 4361–4369 (2011)

    Article  Google Scholar 

  59. N. Yamada, T. Matsunaga, J. Appl. Phys. 88, 7020 (2000)

    Article  Google Scholar 

  60. W.A. Johnson, R.F. Mehl, Trans. AIME 135, 416 (1939)

    Google Scholar 

  61. N. Yamada et al., J. Appl. Phys. 69, 2849 (1991)

    Article  Google Scholar 

  62. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  63. A.E. Owen, Amorphous Solid and the Liquid State (Plenum, New York, 1985)

    Google Scholar 

  64. P. Fantini et al., Appl. Phys. Lett. 88, 263506 (2006)

    Article  Google Scholar 

  65. P. Fantini et al., Micron TLP Journal (Micron Internal TLP Journal, Boise, 2015)

    Google Scholar 

  66. R.M. Kielkowski, Inside Spice (McGraw-Hill, New York, 1998)

    Google Scholar 

  67. W. Van Roosbroeck, Phys. Rev. Lett. 28, 1120 (1972)

    Article  Google Scholar 

  68. S. Caravati et al., J. Phys. Condens. Matter 21, 255501 (2009)

    Article  Google Scholar 

  69. S.A. Baily et al., Solid State Commun. 139, 161 (2006)

    Article  Google Scholar 

  70. S. Gabardi et al., Phys. Rev. B 92, 054201 (2015)

    Article  Google Scholar 

  71. S. Lai, T. Lowrey, IEEE IEDM Tech. Dig. 803 (2001)

    Google Scholar 

  72. S.M. Wiggins, al. Appl. Phys. Lett. 84, 4445 (2004)

    Article  Google Scholar 

  73. S. Tyson et al., Aerospace Conference Proceedings (unpublished) 5, 385 (2000)

    Google Scholar 

  74. Sentaurus Device User Guide, version Z, Synopsis, (2007)

    Google Scholar 

  75. T. Quarles et al., SPICE 3 Version 3F5 User’s Manual, 2nd edn. (Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 1994)

    Google Scholar 

  76. U. Russo et al., IEEE Trans. Electron Devices 53(12), 3032 (2006)

    Article  Google Scholar 

  77. U. Russo et al., IEEE Trans. Electron Devices 55(2), 506 (2008)

    Article  Google Scholar 

  78. V.G. Karpov et al., Appl. Phys. Lett. 92, 173501 (2008)

    Article  Google Scholar 

  79. V. Weidenhof et al., J. Appl. Phys. 89, 3168 (2001)

    Article  Google Scholar 

  80. W. Welnic et al., Nat. Mater. 5, 56–62 (2006)

    Article  Google Scholar 

  81. A.C. Warren, IEEE Trans. Electron Devices 20, 123 (1973)

    Article  Google Scholar 

  82. D. Wright, S. Senkader, J. Appl. Phys. 95, 504 (2004)

    Article  Google Scholar 

  83. C.A. Volkert, M. Wuttig, J. Appl. Phys. 86, 1808 (1999)

    Article  Google Scholar 

  84. Z. Sun et al., Phys. Rev. Lett. 96, 055507 (2006)

    Article  Google Scholar 

  85. D. Ielmini, Y. Zhang, J. Appl. Phys. 102, 054517 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Redaelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Redaelli, A. (2018). Self-Consistent Numerical Model. In: Redaelli, A. (eds) Phase Change Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-69053-7_4

Download citation

Publish with us

Policies and ethics