Skip to main content

Fibers and Textiles for Fully Bio-Based Fiber Reinforced Materials

  • Chapter
  • First Online:
Book cover Narrow and Smart Textiles

Abstract

Textile materials and their modifications for use in bio-based fiber reinforced materials are presented. Main results are related to hydrophobic and antimicrobial functionalization, to make the natural fiber materials more suitable for application in composite materials. To realize a fully bio-based composite, it is the challenge to evaluated also bio-based finishing agents offering the wished properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41, 143–151.

    Article  Google Scholar 

  2. Trimble, B.J. (1989). Composite bicycle frame and production method US Patent, US4,850,607.

    Google Scholar 

  3. Cherrington, R., Goodship, V., Meredith, J., Wood, B. M., Coles, S. R., Vuillaume, A., et al. (2012). Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy, 47, 13–21.

    Article  Google Scholar 

  4. Thakur, V. K., & Thakur, M. K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–107.

    Article  CAS  Google Scholar 

  5. Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63, 1259–1264.

    Article  CAS  Google Scholar 

  6. Schürmann, H. (2005). Konstruieren mit Faser-Kunststoff-Verbunden. Berlin: Springer-Verlag.

    Google Scholar 

  7. Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., et al. (2007). Natural fiber eco-composites. Polymer Composites, 28, 98–107.

    Article  CAS  Google Scholar 

  8. Pico, D., Wilms, C., Seide, G., & Gries, T. (2011). Natural volcanic rock fibers. Chemical Fibers International, 61, 90–91.

    CAS  Google Scholar 

  9. Larsen, K. (2009). Recycling wind turbine blades. Renewable Energy Focus, 9, 70–73.

    Article  Google Scholar 

  10. Behr, D. (1991). Wirkerei und Strickerei Technik, 41, 7.

    Google Scholar 

  11. Textor, T., & Mahltig, B. (2010). A sol-gel based surface treatment for preparation of water repellent antistatic textiles. Applied Surface Science, 256, 1668–1674.

    Article  CAS  Google Scholar 

  12. Erdumlu, N., & Ozipek, B. (2008). Investigation of regenerated bamboo fibre and yarn characteristics. Fibres & Textiles in Eastern Europe, 16, 43–47.

    CAS  Google Scholar 

  13. Kick, T., Grethe, T., & Mahltig, B. (2017). A Natural Based Method for Hydrophobic Treatment of Natural Fiber Material. Acta Chimica Slovenica, 64, 373–380.

    Article  CAS  Google Scholar 

  14. Allen, S. (2011). Oberflächenbehandlung von Holz. Vincentz Network GmbH, Hannover: Klassische Techniken und Rezepte.

    Google Scholar 

  15. Schönemann, A., Eisbein, M., Unger, A., Dellmour, M., Frenzel, W., & Kenndler, E. (2008). Historic Consolidants for Wooden Works of Art in Saxony. Studies in Conservation, 53, 118–130.

    Article  Google Scholar 

  16. Trueb, L. F. (2015). Pflanzliche Naturstoffe. Stuttgart: Borntraeger Verlagsbuchhandlung.

    Google Scholar 

  17. Grethe, T., Kick, T., & Mahltig, B. (2017). Sustainable controlling of hydrophilic properties of cotton and linen by application of amino acids. The Journal of the Textile Institute, 108, 436–439.

    Article  CAS  Google Scholar 

  18. Martel, B., Weltrowski, M., Ruffin, D., & Morcellet, M. (2002). Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: study of the process parameters. Journal of Applied Polymer Science, 83, 1449–1456.

    Article  CAS  Google Scholar 

  19. Mahltig, B., Reibold, M., Gutmann, E., Textor, T., Gutmann, J., Haufe, H., et al. (2011). Preparation of silver nanoparticles suitable for textile finishing processes to produce textiles with strong antibacterial properties against different bacteria types. Zeitschrift für Naturforschung B Chemical Sciences, 66B, 905–916.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the programme “Zentrales Innovationsprogramm Mittelstand” of the German Federal Ministry for Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mahltig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grethe, T. et al. (2018). Fibers and Textiles for Fully Bio-Based Fiber Reinforced Materials. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_4

Download citation

Publish with us

Policies and ethics