Skip to main content

Washing and Abrasion Resistance of Conductive Coatings for Vital Sensors

  • Chapter
  • First Online:
Narrow and Smart Textiles

Abstract

In the area of medical textiles, several applications necessitate conductive sensors, such as ECG or pulse measurements, breathing sensors, etc. Additionally, connections between electronic elements, data transfer units, and other parts of sensor networks need conductive paths. The resistance of conductive yarns or coatings against mechanical and chemical influences, however, is often low. Silver particles in coatings or on yarns, e.g., can oxidize during washing. Thin coatings can easily be abraded and offer only a low conductivity due to low layer height, while thicker coatings can be stiff and break during bending. In a recent project, we evaluate different coatings with respect to their resistance against mechanical stress due to abrasion against diverse materials, as a typical demand of sensory shirts or other medical textiles. Conductive silicone rubber, as well as graphite-polyurethane dispersions with different graphite concentrations, were coated on diverse textile fabrics in a defined height. Abrasion tests were performed on these samples using a linear abrasion tester. The electrical resistance of the conductive coatings was measured after each test cycle. Additionally, confocal laser scanning microscopy was used to detect micro-cracks or modifications of the coating surface. The article gives an overview of the results and depicts the advantages and challenges of the conductive coatings under examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz-Pfeiffer, A., Obermann, M., Weber, M. O., & Ehrmann, A. (2016). Smarten up garments through knitting. In IOP Conference Series: Materials Science and Engineering (Vol. 141, p. 012008).

    Google Scholar 

  2. Hertleer, C., Grabowska, M., van Langenhove, L., Catrysse, M., Hermans, B., Puers, R., Kalmar, A., van Egmond, H., & Matthys, D. (2004). The use of electroconductive textile material for the development of a smart suit. In 4th AUTEX Conference, Roubaix 2004.

    Google Scholar 

  3. Mühlsteff, J., Such, O., Schmidt, R., Perkuhn, M., Reiter, H., Lauter, J., Thijs, J., Musch, G., & Harris, M. (2004). Wearable approach for continuous ECG and activity patient-monitoring. In Proceedings of the 26th Annual International IEEE EMBS Conference 2004 (pp. 2184–2187).

    Google Scholar 

  4. Coosemans, J., Hermans, B., & Puers, R. (2006). Integrating wireless ECG monitoring in textiles. Sensors and Actuators A, 130–131, 48–53.

    Article  Google Scholar 

  5. Pacelli, M., Loriga, G., Taccini, N., & Paradiso, R. (2006). Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions. In Proceedings of the 3rd IEEE-EMBS International Summer School Symposium Medical Devices and Biosens (pp. 1–4).

    Google Scholar 

  6. Habetha, J. (2006). The MyHeart project—Fighting cardiovascular diseases by prevention and early diagnosis. In Proceedings of the 28th Annual International IEEE EMBS Conference 2006 (pp. 6746–6749).

    Google Scholar 

  7. Luprano, J., Sola, J., Dasen, S., Koller, J. M., & Chetelat, O. (2006). Combination of body sensor networks and on-body signal processing algorithms: The practical case of MyHeart project. In Proceedings of the International Workshop Wearable Implantable Body Sensor Networks 2006 (pp. 76–79).

    Google Scholar 

  8. Luprano, J. (2006). European projects on smart fabrics, interactive textiles: Sharing opportunities and challenges. In Workshop Wearable Technology Intelligent Textiles, Helsinki/Finland 2006.

    Google Scholar 

  9. Weber, J. L., & Porotte, F. (2006). Medical remote monitoring with clothes. In International Workshop on PHealth, Luzern/Switzerland 2006.

    Google Scholar 

  10. Kim, S., Leonhardt, S., Zimmermann, N., Kranen, P., Kensche, D., Müller, E., & Quix, C. (2008). Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensors shirt. In Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, Hong Kong/China 2008.

    Google Scholar 

  11. Xu, P. J., Zhang, H., & Tao, X. M. (2008). Textile-structured electrodes for electrocardiogram. Textile Progress, 40, 183–213.

    Article  Google Scholar 

  12. Silva, M., Catarino, A., Carvalho, H., Rocha, A., Monteiro, J., & Montagna, G. (2009). Textile sensors for ECG and respiratory frequency on swimsuits. In Intelligent Textiles and Mass customization International Conference, Casablanca/Morocco (pp. 301–310).

    Google Scholar 

  13. Aumann, A., Trummer, S., Brücken, A., Ehrmann, A., & Büsgen, A. (2014). Conceptual design of a sensory shirt for fire-fighters. Textile Research Journal, 84, 1661–1665.

    Article  CAS  Google Scholar 

  14. Tillmanns, A., Heimlich, F., Brücken, A., & Weber, M. O. (2009). Weft knitted spacer fabrics as pressure sensors. Technical Textiles, 52, E207.

    Google Scholar 

  15. Meyer, J., Arnrich, B., Schumm, J., & Tröster, G. (2010). Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sensors Journal, 10, 1391–1398.

    Article  CAS  Google Scholar 

  16. Farringdon, J., Moore, A. J., Tilbury, N., Church, J., & Biemond, P. D. (1999). Wearable sensor badge and sensor jacket for context awareness. In The Third International Symposium on Wearable Computers 1999 (pp. 107–113).

    Google Scholar 

  17. Catrysse, M., Puers, R., Hertleer, C., van Langenhove, L., van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A, 114, 302–311.

    Article  CAS  Google Scholar 

  18. Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators, A: Physical, 126, 129–140.

    Article  CAS  Google Scholar 

  19. Zieba, J., & Frydrysiak, M. (2006). Textronics—Electrical and electronic textiles. Sensors for breathing frequency measurement. Fibers and Textiles in Eastern Europe, 14, 43–48.

    Google Scholar 

  20. Ehrmann, A., Heimlich, F., Brücken, A., Weber, M. O., & Haug, R. (2014). Suitability of knitted fabrics as elongation sensors subject to structure, stitch dimension and elongation direction. Textile Research Journal, 84, 2006–2012.

    Article  CAS  Google Scholar 

  21. Atalay, O., & Kennon, W. R. (2014). Knitted strain sensors: Impact of design parameters on sensing properties. Sensors, 14, 4712–4730.

    Article  CAS  Google Scholar 

  22. Atalay, O., Atalay, A., Gafford, J., Wang, H., Wood, R., & Walsh, C. (2017). A highly stretchable capacitive-based strain sensor based on metal deposition and laser rastering. Advanced Materials Technologies, 1700081.

    Google Scholar 

  23. Kuhn, H. H., & Child, A. D. (1998). Electrically conducting textiles. In T. A. Skotheim, R. L. Elsenbauer, & J. R. Reynolds (Eds.), Handbook of Conducting Polymers (pp. 993–1013). New York: Marcel Dekker.

    Google Scholar 

  24. Kirstein, T., Cottet, D., Grzyb, J., & Tröster, G. (2002). Textiles for signal transmission in wearables. In Proceedings of ACM of First Workshop on Electronic Textiles, San Jose/California 2002.

    Google Scholar 

  25. Lesnikowski, J. (2011). Textile transmission lines in the modern textronic clothes. Fibres and Textiles in Eastern Europe, 19, 89–93.

    Google Scholar 

  26. Locher, I., Klemm, M., Kirstein, T., & Tröster, G. (2006). Design and characterization of purely textile patch antennas. IEEE Transactions on Advanced Packaging, 29, 777–788.

    Article  Google Scholar 

  27. Shi, M. J., Yang, C., Song, X. F., Liu, J., Zhao, L. P., Zhang, P., et al. (2017). Stretchable wire-shaped supercapacitors with high energy density for size-adjustable wearable electronics. Chemical Engineering Journal, 322, 538–545.

    Article  CAS  Google Scholar 

  28. Babaahmadi, V., Montazer, M., & Gao, W. (2017). Low temperature welding of graphene on PET with silver nanoparticles producing higher durable electro-conductive fabric. Carbon, 118, 443–451.

    Article  CAS  Google Scholar 

  29. Li, X. T., Hua, T., & Xu, B. G. (2017). Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon, 118, 686–698.

    Article  CAS  Google Scholar 

  30. Cao, J. L., & Wang, C. X. (2017). Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Applied Surface Science, 405, 380–388.

    Article  CAS  Google Scholar 

  31. Choi, C. M., Kwon, S. N., & Na, S. I. (2017). Conductive PEDOT:PSS-coated poly-paraphenylene terephthalamide thread for highly durable electronic textiles. Journal of Industrial and Engineering Industry, 50, 155–161.

    CAS  Google Scholar 

  32. Tadesse, M. G., Loghin, C., Chen, Y., Wang, L. C., Catalin, D., & Nierstrasz, V. (2017). Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability. Smart Materials and Structures, 26, 065016.

    Article  Google Scholar 

  33. Alamer, F. A. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273.

    Article  Google Scholar 

  34. de Oliveira, C. R. S., Batistella, M. A., de Souza, S. M. A. G. U., & de Souza, A. A. U. (2017). Development of flexible sensors using knit fabrics with conductive polyaniline coating and graphite electrodes. Journal of Applied Polymer Science, 134, 44785.

    Google Scholar 

  35. Topp, K., Haase, H., Degen, C., Illing, G., & Mahltig, B. (2014). Coatings with metallic effect pigments for antimicrobial and conductive coating of textiles with electromagnetic shielding properties. Journal of Coatings Technology and Research, 11, 943–957.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ehrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schäl, P., Juhász Junger, I., Grimmelsmann, N., Meissner, H., Ehrmann, A. (2018). Washing and Abrasion Resistance of Conductive Coatings for Vital Sensors. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_21

Download citation

Publish with us

Policies and ethics