Skip to main content

Experimental and Numerical Investigation of Triaxial Braid Reinforcements

  • Chapter
  • First Online:

Abstract

Triaxial braided reinforcements are extensively used as main constituent materials in various biomedical and composite applications. The material parameters, and the choice of process parameters during the braiding process, have a significant influence on the geometrical and mechanical properties of these reinforcements. In this study, the manufacturing on a braiding loom of triaxial braids with a large range of braiding angle is presented. On these samples geometrical properties, as bias yarn length, crimp, linear mass, are experimentally identified in function of the braiding angle. From uniaxial tests, the specific tensile behavior of these braided fabrics is characterized. These results are compared with analytical models described in the literature. Associated to this experimental approach, the geometry of these triaxial braids is numerically modeled thanks to TexMind Braider software dedicated for three-dimensional creation of braided structures. Comparison between characteristics experimentally identified and computed is analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Desplentere, F., Lomov, S. V., Woerdeman, D. L., Verpoest, I., Wevers, M., & Bogdanovich, A. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 65(13), 1920–1930.

    Article  Google Scholar 

  2. Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., & Boisse, P. (2015). 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography. Composite Structures, 132, 1094–1104.

    Article  Google Scholar 

  3. Rahali, Y., Assidi, M., Goda, I., Zghal, A., & Ganghoffer, J.F. (2016). Computation of the effective mechanical properties including nonclassical moduli of 2.5D and 3D interlocks by micromechanical approaches. Composites Part B, 98,194–212.

    Google Scholar 

  4. Lomov, S. (2011). Modelling the geometry of textile reinforcements for composites: Wisetex. In P. Boisse ( Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9.

    Google Scholar 

  5. Long, A., & Brown, L. (2011). Modelling the geometry of textile reinforcements for composites: Texgen. In P. Boisse (Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9.

    Google Scholar 

  6. Ning, F., Potluri, P., Yu, W., & Hearle, J. (2016). Geometrical modeling of tubular braided structures using generalized rose curve. Textile Research Journal, 0040517516632471, first published on February 18, 2016.

    Google Scholar 

  7. Brunnschweiler, D. (1953). Braids and braiding. The Journal of the Textile Institute, 44, 666–686.

    Google Scholar 

  8. Mouritz, A. P., Bannister, M. K., Falzon, P. J., et al. (1999). Review of applications for advanced three-dimensional fibre textile composites. Composites Part A, 30, 1445–1461.

    Article  Google Scholar 

  9. Potluri, P., Rawal, A., Rivaldi, M., et al. (2003). Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms. Composites Part A, 34, 481–492.

    Article  Google Scholar 

  10. Potluri, P., Manan, A., Francke, M., et al. (2006). Flexural and torsional behaviour of biaxial and triaxial braided composite structures. Composite Structures, 75, 377–386.

    Article  Google Scholar 

  11. Potluri, P., & Manan, A. (2007). Mechanics of non-orthogonally interlaced textile composites. Composites Part A, 38, 1216–1226.

    Article  Google Scholar 

  12. Ayranci, A., & Carey, J. (2010). Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry. Composites Part B, 41, 229–235.

    Article  Google Scholar 

  13. Bilisik, K. (2013). Three-dimensional braiding for composites: A review. Textile Research Journal, 83, 1414–1436.

    Article  CAS  Google Scholar 

  14. Branscomb, D., Beale, D., & Broughton, R. (2013). New directions in braiding. Journal of Engineered Fibers and Fabrics, 8, 11–24.

    Google Scholar 

  15. Potluri, P. (2012). Braiding. In L. Nicolais, & A. Borzacchiello (Eds.), Wiley encyclopedia of composites (2nd edn.) New York: Wiley.

    Google Scholar 

  16. Kessels, J. F. A., & Akkerman, R. (2002). Prediction of the yarn trajectories on complex braided preforms. Composites Part A, 33, 1073–1081.

    Article  Google Scholar 

  17. Van Ravenhorst, J. H., & Akkerman, R. (2014). Circular braiding take-up speed generation using inverse kinematics. Composites Part A, 64, 147–158.

    Article  Google Scholar 

  18. Lyons, J., & Pastore, C. M. (2004). Effect of braid structure on yarn cross-sectional shape. Fibers and Polymers, 5, 182–186.

    Article  Google Scholar 

  19. Du, G. W., & Popper, P. (1994). Analysis of a circular braiding process for complex shapes. Journal of the Textile Institute, 85, 316–337.

    Article  Google Scholar 

  20. Ayranci, C., & Carey, J. (2008). 2D braided composites: A review for stiffness critical applications. Composite Structures, 85, 43–58.

    Article  Google Scholar 

  21. Laberge-Lebel, L., & Van Hoa, S. (2007). Manufacturing of braided thermoplastic composites with carbon/nylon commingled fibers. Journal of Composite Materials, 41, 1101–1120.

    Article  CAS  Google Scholar 

  22. Birkefeld, K., Roder, M., von Reden, T., et al. (2012). Characterization of biaxial and triaxial braids: Fiber architecture and mechanical properties. Applied Composite Materials, 19, 259–273.

    Article  Google Scholar 

  23. Castejon, L., Miravete, A., & Cuartero, J. (2001). Analytical formulation of (0°, +−α°) braided composites and its application in crashworthiness simulations. Mechanics of Composite Materials and Structures, 8, 219–229.

    Article  CAS  Google Scholar 

  24. Aggarwal, A., Ramakrishna, S., & Ganesh, V. K. (2002). Predicting the strength of diamond braided composites. Journal of Composite Materials, 36, 625–643.

    Article  CAS  Google Scholar 

  25. Quek, S. C., Waas, A. M., Shahwanb, K. W., et al. (2003). Analysis of 2D triaxial flat braided textile composites. International Journal of Mechanical Sciences, 45, 1077–1096.

    Article  Google Scholar 

  26. Goyal, D., & Whitcomb, J. D. (2006). Analysis of stress concentrations in 2*2 braided composites. Journal of Composite Materials, 40, 533–546.

    Article  Google Scholar 

  27. Kier, Z. T., Salvi, A., Theis, G., et al. (2015). Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties. Composites Part B, 68, 288–299.

    Article  CAS  Google Scholar 

  28. Hivet, G., & Boisse, P. (2008). Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension. Composites Part B, 39, 345–361.

    Article  Google Scholar 

  29. Hivet, G. (2013). Vidal-Salle´ E and Boisse P. Analysis of the stress components in a textile composite reinforcement. Journal of Composite Materials, 47, 269–285.

    Article  Google Scholar 

  30. Harte, A. M., & Fleck, N. A. (2000). On the mechanics of braided composites in tension. European Journal of Mechanics A/Solids, 19, 259–275.

    Article  Google Scholar 

  31. Hristov, K., Carroll, E. A., Dunn, M., et al. (2004). Mechanical behaviour of circular braids under tensile loads. Textile Research Journal, 74, 20–26.

    Article  CAS  Google Scholar 

  32. Dabiryan, H., & Johari, M. S. (2016). Analysis of the tensile behaviour of tubular braids using energy method, part I: Theoretical analysis. Journal of Textile Institute, 107.

    Google Scholar 

  33. Del Rosso, S., Lannucci, L., & Curtis, P. T. (2015). Experimental investigation of the mechanical properties of dry microbraids and microbraid reinforced polymer composites. Composite Structures, 125, 509–519.

    Article  Google Scholar 

  34. Rawal, A., Kumar, R., & Saraswat, H. (2012). Tensile mechanics of braided structures. Textile Research Journal, 82, 1703–1710.

    Article  CAS  Google Scholar 

  35. Rawal, A., Potluri, P., & Steele, C. (2005). Geometrical modeling of the yarn paths in three dimensional braided structures. Journal of Industrial Textiles, 35, 115–135.

    Article  Google Scholar 

  36. Rawal, A., Saraswat, H., & Kumar, R. (2013). Tensile response of tubular braids with an elastic core. Composites Part A, 47, 150–155.

    Article  CAS  Google Scholar 

  37. Rawal, A., Sibal, A., & Saraswat, H. (2013). Tensile behaviour of regular triaxial braided structures. Mechanics of Materials, 91, 277–289.

    Article  Google Scholar 

  38. Rawal, A., Saraswat, H., & Sibal, A. (2015). Tensile response of braided structures: A review. Textile Research Journal, 85, 2083–2096.

    Article  CAS  Google Scholar 

  39. Duchamp, B., Legrand, X., & Soulat, D. (2016). Structural and tensile behaviors of braided reinforcements: Characterization and model. In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing. ISBN: 9780081009260.

    Google Scholar 

  40. Magalhaes, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., et al. (2016). Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Composites Part A, 87, 86–97.

    Article  CAS  Google Scholar 

  41. Subramani, P., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D. V., Lourenco, P. B., et al. (2016). Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Composites Part B, 93, 132–142.

    Article  CAS  Google Scholar 

  42. Kyosev, Y. (2012). TexMind Braider, Monchengladbach www.texmind.com.

  43. Risicato, J. V., Kelly, F., Soulat, D., et al. (2015). A complex shaped reinforced thermoplastic composite part made of commingled yarns with integrated sensor. Applied Composite Materials, 22, 81–98.

    Article  CAS  Google Scholar 

  44. Jacquot, P. B., Wang, P., Soulat, D., & Legrand, X. (2016). Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics. Journal of Industrial Textiles, 46(3), 698–718.

    Article  CAS  Google Scholar 

  45. Kostar, T. D., & Chou, T. W. (2002). A methodology for Cartesian braiding of three-dimensional shapes and special structures. Journal Materials Science, 37, 2811–2824.

    Article  CAS  Google Scholar 

  46. Kyosev, Y. (2015). Productivity calculations in braiding. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles.

    Google Scholar 

  47. Endruweit, A., & Long, A. C. (2011). A model for the in-plane permeability of triaxially braided reinforcements. Composites Part A, 42, 165–172.

    Article  Google Scholar 

  48. Image J: An open Platform for Scientific image analysis. Retrieved from August 24, 2016, from http://imagej.net/Welcome.

  49. Byun, J. H., Whitney, T. J., Du, G. W., et al. (1991). Analytical characterization of two-step braided composites. Journal of Composite Materials, 25, 1599–1618.

    Article  Google Scholar 

  50. Buyn, J. H. (2000). The analytical characterization of 2-D braided textile composites. Composite Science Technology, 60, 705–716.

    Article  Google Scholar 

  51. Ishikawa, T., & Chou, T.-W. (1982). Elastic behaviour of woven hybrid composites. Journal of Composite Materials, 16, 2–19.

    Article  Google Scholar 

  52. Duchamp, B., Legrand, X., & Soulat, D. (2016). The tensile behavior of biaxial and triaxial braided fabrics. Journal of Industrial Textiles. Retrieved June 16, 2016, from doi 10.1177/1528083716654469.

  53. Duchamp, B. (2016). Contribution à l’élaboration de préformes textiles pour le renforcement de réservoir souples. Ph.D. thesis, Université Lille. (to be published, in French).

    Google Scholar 

  54. Kyosev, Y. (2013). Some computational and modelling aspects about the multifi lament modeling of braided preforms. In: S. Lomov (Ed.), Proceedings of Composites Week@Leuven and TexComp-11 conference. Leuven.

    Google Scholar 

  55. Kyosev, Y. (2015). Computer assisted design (CAD) software for the design of braided structures. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles.

    Google Scholar 

  56. Kyosev, Y., & Cordes, A. (2016). Geometrical modelling of tubular and flat braids within the jamming limits—verification and limitations. In Y. Kyosev (Ed.), Recent Developments in Braiding and Narrow Weaving.

    Google Scholar 

  57. Kyosev, Y. (2016). Geometrical modeling and computational mechanics tools for braided structures . In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing Series in Textiles.

    Google Scholar 

  58. Kyosev, Y. (2016). Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Textile Research Journal, 86(12), 1270–1279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Soulat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duchamp, B., Kyosev, Y., Legrand, X., Soulat, D. (2018). Experimental and Numerical Investigation of Triaxial Braid Reinforcements. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_11

Download citation

Publish with us

Policies and ethics