Advertisement

Bridging the Gaps in the Vaccine Development: Avant-Garde Vaccine Approach with Secreted Heat Shock Protein gp96-Ig

  • Natasa Strbo
Chapter

Abstract

Design of highly pure and safe vaccines in post-genomic era unfortunately includes the inherent lack of immunostimulatory properties of proteins and peptides. Vaccine adjuvants are therefore considered key components in modern vaccinology since they provide the necessary help of enhancing the immune responses. Over the past two decades, Dr. Podack’s laboratory has developed an exciting and avant-garde reagent: a heat shock protein-based vaccine, chaperone gp96, that generates effective antitumor and anti-infectious immunity in vivo. State-of-the-art secreted gp96-Ig vaccine provides within one molecule strong adjuvant properties and antigen specificity for cross-priming CD8 T cells and activation of innate immunity. Gp96-peptide complexes were identified as an extremely efficient, femto-molar pathway of MHC I-mediated antigen cross-presentation, generating CD8 CTL responses detectable in the blood, spleen, liver, intestinal and reproductive tract lamina propria, and intraepithelial compartment, respectively. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce not only systemic but also mucosal immunity. The gp96-Ig vaccine strategy has been utilized in clinical trials for non-small cell lung cancer (NSCLC) patients and as prophylactic SIV vaccine to protect nonhuman primates from mucosal infection upon challenge with SIV, demonstrating the feasibility and benefits of this approach for both safety and efficacy.

Keywords

Heat shock proteins gp96 Vaccine Cancer HIV Immunotherapy 

References

  1. 1.
    Robbins JB, Schneerson R, Trollfors B, Sato H, Sato Y, Rappuoli R, Keith JM (2005) The diphtheria and pertussis components of diphtheria-tetanus toxoids-pertussis vaccine should be genetically inactivated mutant toxins. J Infect Dis 191:81–88CrossRefGoogle Scholar
  2. 2.
    Robinson MS, Watts C, Zerial M (1996) Membrane dynamics in endocytosis. Cell 84:13–21CrossRefGoogle Scholar
  3. 3.
    Johnston MI, Fauci AS (2007) An HIV vaccine—evolving concepts. N Engl J Med 356:2073–2081CrossRefGoogle Scholar
  4. 4.
    Mcmichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255CrossRefGoogle Scholar
  5. 5.
    Rappuoli R (2004) From Pasteur to genomics: progress and challenges in infectious diseases. Nat Med 10:1177–1185CrossRefGoogle Scholar
  6. 6.
    Rappuoli R (2007) Bridging the knowledge gaps in vaccine design. Nat Biotechnol 25:1361–1366CrossRefGoogle Scholar
  7. 7.
    Strbo N, Garcia-Soto A, Schreiber TH, Podack ER (2013a) Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. Immunol Res 57:311–325CrossRefGoogle Scholar
  8. 8.
    Moser M, Leo O (2010) Key concepts in immunology. Vaccine 28(Suppl 3):C2–13CrossRefGoogle Scholar
  9. 9.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546CrossRefGoogle Scholar
  10. 10.
    Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219PubMedGoogle Scholar
  11. 11.
    Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R (2000) Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30:594–603CrossRefGoogle Scholar
  12. 12.
    Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003CrossRefGoogle Scholar
  13. 13.
    Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30:2211–2215CrossRefGoogle Scholar
  14. 14.
    Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165:6029–6035CrossRefGoogle Scholar
  15. 15.
    Zhou YJ, Messmer MN, Binder RJ (2014) Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2:217–228CrossRefGoogle Scholar
  16. 16.
    Bach FH, Geller RL, Nelson PJ, Panzer S, Gromo G, Benfield MR, Inverardi L, Podack ER, Witson JC, Houchins JP et al (1989) A “minimal signal-stepwise activation” analysis of functional maturation of T lymphocytes. Immunol Rev 111:35–57CrossRefGoogle Scholar
  17. 17.
    Baker M, Podack ER, Levy RB (1995) Fas and perforin cytotoxic pathways are not the major effector mechanisms in allogeneic resistance to bone marrow. Ann N Y Acad Sci 770:368–369CrossRefGoogle Scholar
  18. 18.
    Baker MB, Altman NH, Podack ER, Levy RB (1996) The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 183:2645–2656CrossRefGoogle Scholar
  19. 19.
    Biesecker G, Podack ER, Halverson CA, Muller-Eberhard HJ (1979) C5b-9 dimer: isolation from complement lysed cells and ultrastructural identification with complement-dependent membrane lesions. J Exp Med 149:448–458CrossRefGoogle Scholar
  20. 20.
    Blazar BR, Levy RB, Mak TW, Panoskaltsis-Mortari A, Muta H, Jones M, Roskos M, Serody JS, Yagita H, Podack ER, Taylor PA (2004) CD30/CD30 ligand (CD153) interaction regulates CD4+ T cell-mediated graft-versus-host disease. J Immunol 173:2933–2941CrossRefGoogle Scholar
  21. 21.
    Fang L, Adkins B, Deyev V, Podack ER (2008) Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med 205:1037–1048CrossRefGoogle Scholar
  22. 22.
    Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R, Thayer M, Rodig S, Kutok JL, Jackson EK, Karger B, Podack ER, Ohta A, Sitkovsky MV (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7:277ra30CrossRefGoogle Scholar
  23. 23.
    Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37CrossRefGoogle Scholar
  24. 24.
    Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, Podack ER (1988) Structure and function of human perforin. Nature 335:448–451CrossRefGoogle Scholar
  25. 25.
    Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER (2007) Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J Immunol 179:2310–2317CrossRefGoogle Scholar
  26. 26.
    Podack ER (1985) The molecular mechanism of lymphocyte-mediated tumor cell lysis. Immunol Today 6:21–27CrossRefGoogle Scholar
  27. 27.
    Podack ER, Konigsberg PJ (1984) Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med 160:695–710CrossRefGoogle Scholar
  28. 28.
    Podack ER, Young JD, Cohn ZA (1985) Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci U S A 82:8629–8633CrossRefGoogle Scholar
  29. 29.
    Raez LE, Cassileth PA, Schlesselman JJ, Sridhar K, Padmanabhan S, Fisher EZ, Baldie PA, Podack ER (2004) Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. J Clin Oncol 22:2800–2807CrossRefGoogle Scholar
  30. 30.
    Raez LE, Fein S, Podack ER (2005a) Lung cancer immunotherapy. Clin Med Res 3:221–228CrossRefGoogle Scholar
  31. 31.
    Raez LE, Rosenblatt JD, Podack ER (2006) Present and future of lung cancer vaccines. Expert Opin Emerg Drugs 11:445–459CrossRefGoogle Scholar
  32. 32.
    Schreiber TH, Podack ER (2013) Immunobiology of TNFSF15 and TNFRSF25. Immunol Res 57:3–11CrossRefGoogle Scholar
  33. 33.
    Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER (2003) Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 18:381–390CrossRefGoogle Scholar
  34. 34.
    Strbo N, Pahwa S, Kolber MA, Gonzalez L, Fisher E, Podack ER (2010) Cell-secreted Gp96-Ig-peptide complexes induce lamina propria and intraepithelial CD8+ cytotoxic T lymphocytes in the intestinal mucosa. Mucosal Immunol 3:182–192CrossRefGoogle Scholar
  35. 35.
    Strbo N, Vaccari M, Pahwa S, Kolber MA, Doster MN, Fisher E, Gonzalez L, Stablein D, Franchini G, Podack ER (2013b) Cutting edge: novel vaccination modality provides significant protection against mucosal infection by highly pathogenic simian immunodeficiency virus. J Immunol 190:2495–2499CrossRefGoogle Scholar
  36. 36.
    Tschopp J, Muller-Eberhard HJ, Podack ER (1982) Formation of transmembrane tubules by spontaneous polymerization of the hydrophilic complement protein C9. Nature 298:534–538CrossRefGoogle Scholar
  37. 37.
    Yamazaki K, Nguyen T, Podack ER (1999) Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol 163:5178–5182PubMedGoogle Scholar
  38. 38.
    Raez LE, Santos ES, Mudad R, Podack ER (2005b) Clinical trials targeting lung cancer with active immunotherapy: the scope of vaccines. Expert Rev Anticancer Ther 5:635–644CrossRefGoogle Scholar
  39. 39.
    Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER (2009) Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res 69:2026–2033CrossRefGoogle Scholar
  40. 40.
    Strbo N, Vaccari M, Pahwa S, Kolber MA, Fisher E, Gonzalez L, Doster MN, Hryniewicz A, Felber BK, Pavlakis GN, Franchini G, Podack ER (2011) Gp96 SIV Ig immunization induces potent polyepitope specific, multifunctional memory responses in rectal and vaginal mucosa. Vaccine 29:2619–2625CrossRefGoogle Scholar
  41. 41.
    Oizumi S, Deyev V, Yamazaki K, Schreiber T, Strbo N, Rosenblatt J, Podack ER (2008) Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother 31:394–401CrossRefGoogle Scholar
  42. 42.
    Strbo N, Podack ER (2008) Secreted heat shock protein gp96-Ig: an innovative vaccine approach. Am J Reprod Immunol 59:407–416CrossRefGoogle Scholar
  43. 43.
    Dollins DE, Immormino RM, Gewirth DT (2005) Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J Biol Chem 280:30438–30447CrossRefGoogle Scholar
  44. 44.
    Immormino RM, Dollins DE, Shaffer PL, Soldano KL, Walker MA, Gewirth DT (2004) Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J Biol Chem 279:46162–46171CrossRefGoogle Scholar
  45. 45.
    Peng P, Menoret A, Srivastava PK (1997) Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods 204:13–21CrossRefGoogle Scholar
  46. 46.
    Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396CrossRefGoogle Scholar
  47. 47.
    Linderoth NA, Popowicz A, Sastry S (2000) Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem 275:5472–5477CrossRefGoogle Scholar
  48. 48.
    Sastry S, Linderoth N (1999) Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94). J Biol Chem 274:12023–12035CrossRefGoogle Scholar
  49. 49.
    Wearsch PA, Nicchitta CV (1997) Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem 272:5152–5156CrossRefGoogle Scholar
  50. 50.
    Linderoth NA, Simon MN, Hainfeld JF, Sastry S (2001a) Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes. Essential role of some aromatic amino acid residues in the peptide-binding site. J Biol Chem 276:11049–11054CrossRefGoogle Scholar
  51. 51.
    Linderoth NA, Simon MN, Rodionova NA, Cadene M, Laws WR, Chait BT, Sastry S (2001b) Biophysical analysis of the endoplasmic reticulum-resident chaperone/heat shock protein gp96/GRP94 and its complex with peptide antigen. Biochemistry 40:1483–1495CrossRefGoogle Scholar
  52. 52.
    Biswas C, Sriram U, Ciric B, Ostrovsky O, Gallucci S, Argon Y (2006) The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen-presenting cells. Int Immunol 18:1147–1157CrossRefGoogle Scholar
  53. 53.
    Gidalevitz T, Biswas C, Ding H, Schneidman-Duhovny D, Wolfson HJ, Stevens F, Radford S, Argon Y (2004) Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J Biol Chem 279:16543–16552CrossRefGoogle Scholar
  54. 54.
    Ying M, Flatmark T (2006) Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+. FEBS J 273:513–522CrossRefGoogle Scholar
  55. 55.
    Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375CrossRefGoogle Scholar
  56. 56.
    Randow F, Seed B (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3:891–896CrossRefGoogle Scholar
  57. 57.
    Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226CrossRefGoogle Scholar
  58. 58.
    Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588CrossRefGoogle Scholar
  59. 59.
    Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152:5398–5403PubMedGoogle Scholar
  60. 60.
    Riley JP, Rosenberg SA, Parkhurst MR (2001) Identification of a new shared HLA-A2.1 restricted epitope from the melanoma antigen tyrosinase. J Immunother 24:212–220CrossRefGoogle Scholar
  61. 61.
    Schreiber TH, Raez L, Rosenblatt JD, Podack ER (2010) Tumor immunogenicity and responsiveness to cancer vaccine therapy: the state of the art. Semin Immunol 22:105–112CrossRefGoogle Scholar
  62. 62.
    de Smet C, Lurquin C, de Plaen E, Brasseur F, Zarour H, de Backer O, Coulie PG, Boon T (1997) Genes coding for melanoma antigens recognised by cytolytic T lymphocytes. Eye (Lond) 11(Pt 2):243–248CrossRefGoogle Scholar
  63. 63.
    Singhal S, Miller D, Ramalingam S, Sun SY (2008) Gene expression profiling of non-small cell lung cancer. Lung Cancer 60:313–324CrossRefGoogle Scholar
  64. 64.
    Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761CrossRefGoogle Scholar
  65. 65.
    Liyanage UK, Goedegebuure PS, Moore TT, Viehl CT, Moo-Young TA, Larson JW, Frey DM, Ehlers JP, Eberlein TJ, Linehan DC (2006) Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother 29:416–424CrossRefGoogle Scholar
  66. 66.
    Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811CrossRefGoogle Scholar
  67. 67.
    Itoh K, Tilden AB, Balch CM (1986) Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res 46:3011–3017PubMedGoogle Scholar
  68. 68.
    Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80CrossRefGoogle Scholar
  69. 69.
    Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296CrossRefGoogle Scholar
  70. 70.
    Azoury SC, Straughan DM, Shukla V (2015) Immune checkpoint inhibitors for cancer therapy: clinical efficacy and safety. Curr Cancer Drug Targets 15:452–462CrossRefGoogle Scholar
  71. 71.
    Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182CrossRefGoogle Scholar
  72. 72.
    Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218CrossRefGoogle Scholar
  73. 73.
    Bolli E, Quaglino E, Arigoni M, Lollini PL, Calogero R, Forni G, Cavallo F (2011) Oncoantigens for an immune prevention of cancer. Am J Cancer Res 1:255–264PubMedGoogle Scholar
  74. 74.
    Wolchok JD, Chan TA (2014) Cancer: antitumour immunity gets a boost. Nature 515:496–498CrossRefGoogle Scholar
  75. 75.
    Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721CrossRefGoogle Scholar
  76. 76.
    Ohta A, Madasu M, Subramanian M, Kini R, Jones G, Chouker A, Ohta A, Sitkovsky M (2014) Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. Int Immunol 26:83–91CrossRefGoogle Scholar
  77. 77.
    Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, Abbott R, Philbrook P, Thayer M, Shujia D, Rodig S, Kutok JL, Ren J, Ohta A, Podack ER, Karger B, Jackson EK, Sitkovsky M (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl) 92:1283–1292CrossRefGoogle Scholar
  78. 78.
    Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, Quyyumi F, Garg S, Altman JD, Del Rio C, Keyserling HL, Ploss A, Rice CM, Orenstein WA, Mulligan MJ, Ahmed R (2009) The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol 183:7919–7930CrossRefGoogle Scholar
  79. 79.
    Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, Asher TE, Douek DC, Harari A, Pantaleo G, Bailer R, Graham BS, Roederer M, Koup RA (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204:1405–1416CrossRefGoogle Scholar
  80. 80.
    Genesca M, Skinner PJ, Bost KM, Lu D, Wang Y, Rourke TL, Haase AT, Mcchesney MB, Miller CJ (2008a) Protective attenuated lentivirus immunization induces SIV-specific T cells in the genital tract of rhesus monkeys. Mucosal Immunol 1:219–228CrossRefGoogle Scholar
  81. 81.
    Genesca M, Skinner PJ, Hong JJ, Li J, Lu D, Mcchesney MB, Miller CJ (2008b) With minimal systemic T-cell expansion, CD8+ T cells mediate protection of rhesus macaques immunized with attenuated simian-human immunodeficiency virus SHIV89.6 from vaginal challenge with simian immunodeficiency virus. J Virol 82:11181–11196CrossRefGoogle Scholar
  82. 82.
    Ramirez SR, Singh-Jasuja H, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, Rammensee HG, Schild H (2005) Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones 10:221–229CrossRefGoogle Scholar
  83. 83.
    Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER (2012) T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol 189:3311–3318CrossRefGoogle Scholar
  84. 84.
    Selinger C, Strbo N, Gonzalez L, Aicher L, Weiss JM, Law GL, Palermo RE, Vaccari M, Franchini G, Podack ER, Katze MG (2014) Multiple low-dose challenges in a rhesus macaque AIDS vaccine trial result in an evolving host response that affects protective outcome. Clin Vaccine Immunol 21:1650–1660CrossRefGoogle Scholar
  85. 85.
    Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, Mcneil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH, Investigators M-T (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyMiller School of Medicine, University of MiamiMiamiUSA

Personalised recommendations