Advertisement

Sentiment-Analysis for German Employer Reviews

  • Jennifer Abel
  • Katharina Klohs
  • Holger Lehmann
  • Birger LantowEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 303)

Abstract

This paper examines the possibilities of sentiment analysis performed on German employer reviews. In times of competition for highly skilled professionals on the German job market, there is a demand for the monitoring of social media and web sites providing employment related information. Compared to mainstream research this implies (1) a focus on German language, (2) employer reputation as a new domain, and (3) employer reviews as a new source possibly showing special linguistic characteristics. General approaches and tools for sentiment analysis and their application to German language are assessed in a first step. Then, selected approaches are evaluated regarding their analysis accuracy based on a data set containing German employer reviews. The results are used to conclude major obstacles, promising approaches and possible prospective research directions in the domain of employer reputation analysis.

Keywords

Sentiment analysis Recruitment Social media analysis Employer reputation Machine learning 

References

  1. 1.
    Heyer, G.: Text Mining und Text Mining Services. eDITion, 1/2010:7–10 (2010)Google Scholar
  2. 2.
    Dashtipour, K., Poria, S., Hussain, A., et al.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 775 (2016)Google Scholar
  3. 3.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)CrossRefGoogle Scholar
  4. 4.
    Marsland, S.: Machine Learning - An Algorithmic Perspective. CRC Press, Boca Raton (2015)Google Scholar
  5. 5.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi: 10.1007/3-540-45014-9_1 CrossRefGoogle Scholar
  6. 6.
    Lämmel, U., Cleve, J.: Künstliche Intelligenz. Carl Hanser Verlag GmbH Co. KG, Munich (2012)CrossRefGoogle Scholar
  7. 7.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, Boston (1999). (Chap. 3)Google Scholar
  8. 8.
    Cherkassky, V., Mulier, F.M.: Learning from Data: Concepts, Theory, and Methods. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  9. 9.
    Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn. 29(2), 103–130 (1997)CrossRefGoogle Scholar
  10. 10.
    Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey. IEEE Trans. Syst. Man Cybern. Part C 35(4), 476–487 (2005)CrossRefGoogle Scholar
  11. 11.
    Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015)CrossRefGoogle Scholar
  12. 12.
    Momtazi, S.: Fine-grained German sentiment analysis on social media. In: Proceedings of the 9th International Conference on Language Resources and Evaluation, pp. 1215–1220 (2012)Google Scholar
  13. 13.
    Khan, A., Baharudin, B., Lee, L.H., Khan, K.: A review of machine learning algorithms for text-documents classification. J. Adv. Inf. Technol. 1(1), 4–20 (2010)Google Scholar
  14. 14.
    Caumanns, J.: A Fast and Simple Stemming Algorithm for German Words. Published in: Department of computer science at the free university of Berlin, pp. 1–10 (1999)Google Scholar
  15. 15.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for social web. J. Am. Soc. Inform. Sci. Technol. 63(1), 163–173 (2012)CrossRefGoogle Scholar
  16. 16.
    Blitzer, J., et al.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 440–447 (2007)Google Scholar
  17. 17.
    Maynard, D., Greenwood, M.A.: Who cares about sarcastic tweets? Investigating the impact of sarcasm on sentiment analysis. In: LREC, pp. 4238–4243 (2014)Google Scholar
  18. 18.
    Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Found. Trends® Inf. Retr. 2(1–2), 1–135 (2008). 4.1.2 Subjectivity Detection and Opinion IdentificationGoogle Scholar
  19. 19.
    Land, S., Fischer, S.: Rapid miner 5 - rapid miner in academic use (2012). http://docs.rapidminer.com/resources/. Accessed 22 May 2016
  20. 20.
    Shalunts, G., Backfried, G.: SentiSAIL: sentiment analysis in English, German and Russian. In: Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 87–97. Springer, Cham (2015). doi: 10.1007/978-3-319-21024-7_6 CrossRefGoogle Scholar
  21. 21.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: SentiStrength (2010). http://sentistrength.wlv.ac.uk/. Accessed 16 May 2016
  22. 22.
    Esuli, A., Sebastiani, F.: SENTIWORDNET: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, pp. 417–422 (2006)Google Scholar
  23. 23.
    Remus, R., Quasthoff, U., Heyer, G.: SentiWS – a publicly available German-language resource for sentiment analysis. In: Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC, pp. 1168–1171 (2010)Google Scholar
  24. 24.
    Cirqueira, D., Jacob, A., Lobato, F., de Santana, A.L., Pinheiro, M.: Performance evaluation of sentiment analysis methods for Brazilian Portuguese. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 263, pp. 245–251. Springer, Cham (2017). doi: 10.1007/978-3-319-52464-1_22 CrossRefGoogle Scholar
  25. 25.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D.: Sentiment strength detection in short informal text. J. Am. Soc. Inform. Sci. Technol. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  26. 26.
    Hripcsak, G., Rothschild, A.: Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)CrossRefGoogle Scholar
  27. 27.
    Balahur, A., Perea-Ortega, J.M.: Sentiment analysis system adaptation for multilingual processing: the case of tweets. Inf. Process. Manag. 51(4), 547–556 (2015)CrossRefGoogle Scholar
  28. 28.
    Kumar, N., Srinathan, K., Varma, V.: Using Wikipedia anchor text and weighted clustering coefficient to enhance the traditional multi-document summarization. In: Gelbukh, A. (ed.) CICLing 2012. LNCS, vol. 7182, pp. 390–401. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28601-8_33 CrossRefGoogle Scholar
  29. 29.
    Scharkow, M.: Thematic content analysis using supervised machine learning: an empirical evaluation using German online news. Qual. Quant. 47(2), 761–773 (2011)CrossRefGoogle Scholar
  30. 30.
    Scholz, T., Conrad, S., Wolters, I.: Comparing different methods for opinion mining in newspaper articles. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 259–264. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31178-9_31 CrossRefGoogle Scholar
  31. 31.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013). doi: 10.1007/s10115-012-0487-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jennifer Abel
    • 1
  • Katharina Klohs
    • 1
  • Holger Lehmann
    • 1
  • Birger Lantow
    • 1
    Email author
  1. 1.Department of Business Information Systems, Faculty of Computer Science and Electrical EngineeringThe University of RostockRostockGermany

Personalised recommendations