Behavioural Profiling Authentication Based on Trajectory Based Anomaly Detection Model of User’s Mobility

  • Piotr KałużnyEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 303)


Behavioural profiling and biometry are an interesting concept connected with authentication that have appeared in scientific literature and business world. Those methods indisputably offer new possibilities such as constant authentication and multi-user classification, but their taxonomy and definitions are not as clarified as it is for traditional authentication factors. The approach presented provides in this work provides an example of behavioural authentication model tested on a large dataset, focusing on one aspect of user behaviour - mobility, which can be adjusted to include other aspects in user behavioural authentication model. Also possible applications and extensions to the model are proposed.


Behavioural biometry Behavioural profiling User profile Authentication CDR Mobility Trajectory extraction Stay-time Anomaly detection 


  1. 1.
    Mobile cellular subscriptions (per 100 people) (2014). Accessed 19 July 2016
  2. 2.
    Aledavood, T., López, E., Roberts, S.G., Reed-Tsochas, F., Moro, E., Dunbar, R.I., Saramäki, J.: Daily rhythms in mobile telephone communication. PLoS ONE 10(9), e0138098 (2015)CrossRefGoogle Scholar
  3. 3.
    Fox, B., van den Dam, R., Shockley, R.: Analytics: Real-world use of big data in telecommunications. IBM Institute for Business Value (2013)Google Scholar
  4. 4.
    Hayashi, E., Riva, O., Strauss, K., Brush, A., Schechter, S.: Goldilocks and the two mobile devices: going beyond all-or-nothing access to a device’s applications. In: Proceedings of the Eighth Symposium on Usable Privacy and Security, p. 2. ACM (2012)Google Scholar
  5. 5.
    Beyond the password: The future of account security (2016). Accessed 10 Sept 2016
  6. 6.
    Muslukhov, I., Boshmaf, Y., Kuo, C., Lester, J., Beznosov, K.: Know your enemy: the risk of unauthorized access in smartphones by insiders. In: Proceedings of the 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 271–280. ACM (2013)Google Scholar
  7. 7.
    Renaud, K.: Evaluating authentication mechanisms. In: Security and Usability, pp. 103–128 (2005)Google Scholar
  8. 8.
    Fridman, L., Weber, S., Greenstadt, R., Kam, M.: Active authentication on mobile devices via stylometry, application usage, web browsing, and GPS location (2015)Google Scholar
  9. 9.
    Market research - biometric smartphone model list (2016). Accessed 19 July 2016
  10. 10.
    Saevanee, H., Clarke, N.L., Furnell, S.M.: Multi-modal behavioural biometric authentication for mobile devices. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 465–474. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30436-1_38 CrossRefGoogle Scholar
  11. 11.
    Alzubaidi, A., Kalita, J.: Authentication of smartphone users using behavioral biometrics. IEEE Commun. Surv. Tutor. 18(3), 1998–2026 (2016)CrossRefGoogle Scholar
  12. 12.
    Crawford, H.A.: A framework for continuous, transparent authentication on mobile devices. Ph.D. thesis, University of Glasgow (2012)Google Scholar
  13. 13.
    Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: Silentsense: silent user identification via touch and movement behavioral biometrics. In: Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, pp. 187–190. ACM (2013)Google Scholar
  14. 14.
    Buthpitiya, S.: Modeling mobile user behavior for anomaly detection (2014)Google Scholar
  15. 15.
    Saevanee, H., Clarke, N., Furnell, S., Biscione, V.: Continuous user authentication using multi-modal biometrics. Comput. Secur. 53, 234–246 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, F., Clarke, N., Papadaki, M., Dowland, P.: Active authentication for mobile devices utilising behaviour profiling. Int. J. Inf. Secur. 13(3), 229–244 (2014)CrossRefGoogle Scholar
  17. 17.
    Mazhelis, O., Puuronen, S.: A framework for behavior-based detection of user substitution in a mobile context. Comput. Secur. 26(2), 154–176 (2007)CrossRefGoogle Scholar
  18. 18.
    Boukerche, A., Notare, M.S.M.A.: Behavior-based intrusion detection in mobile phone systems. J. Parallel Distrib. Comput. 62(9), 1476–1490 (2002)CrossRefGoogle Scholar
  19. 19.
    Li, F., Clarke, N., Papadaki, M., Dowland, P.: Behaviour profiling for transparent authentication for mobile devices (2011)Google Scholar
  20. 20.
    Saramäki, J., Leicht, E.A., López, E., Roberts, S.G., Reed-Tsochas, F., Dunbar, R.I.: Persistence of social signatures in human communication. Proc. Nat. Acad. Sci. 111(3), 942–947 (2014)CrossRefGoogle Scholar
  21. 21.
    Gosnell, D.K.: Social fingerprinting: identifying users of social networks by their data footprint (2014)Google Scholar
  22. 22.
    Saevanee, H., Clarke, N., Furnell, S., Biscione, V.: Text-based active authentication for mobile devices. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 99–112. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55415-5_9 CrossRefGoogle Scholar
  23. 23.
    Brocardo, M.L., Traore, I., Woungang, I.: Toward a framework for continuous authentication using stylometry. In: 2014 IEEE 28th International Conference on Advanced Information Networking and Applications, pp. 106–115. IEEE (2014)Google Scholar
  24. 24.
    Karnan, M., Akila, M., Krishnaraj, N.: Biometric personal authentication using keystroke dynamics: a review. Appl. Soft Comput. 11(2), 1565–1573 (2011)CrossRefGoogle Scholar
  25. 25.
    Gascon, H., Uellenbeck, S., Wolf, C., Rieck, K.: Continuous authentication on mobile devices by analysis of typing motion behavior. In: Sicherheit, pp. 1–12. Citeseer (2014)Google Scholar
  26. 26.
    Primo, A., Phoha, V.V., Kumar, R., Serwadda, A.: Context-aware active authentication using smartphone accelerometer measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 98–105 (2014)Google Scholar
  27. 27.
    Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In: NDSS (2013)Google Scholar
  28. 28.
    Hilas, C.S., Sahalos, J.N.: User profiling for fraud detection in telecommunication networks. In: 5th International Conference on Technology and Automation, pp. 382–387 (2005)Google Scholar
  29. 29.
    Isaacman, S., Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Ranges of human mobility in Los Angeles and New York. In: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2011, pp. 88–93 (2011)Google Scholar
  30. 30.
    Liu, F., Janssens, D., Cui, J., Wang, Y., Wets, G., Cools, M.: Building a validation measure for activity-based transportation models based on mobile phone data. Expert Syst. Appl. 41(14), 6174–6189 (2014)CrossRefGoogle Scholar
  31. 31.
    Çolak, S., Alexander, L.P., Alvim, B.G., Mehndiratta, S.R., González, M.C.: Analyzing cell phone location data for urban travel: current methods, limitations, and opportunities. Transp. Res. Rec.: J. Transp. Res. Board 2526, 126–135 (2015)CrossRefGoogle Scholar
  32. 32.
    Sun, B., Chen, Z., Wang, R., Yu, F., Leung, V.C.: Towards adaptive anomaly detection in cellular mobile networks. In: The IEEE Consumer Communications and Networking Conference, vol. 2, pp. 666–670 (2006)Google Scholar
  33. 33.
    Tandon, G., Chan, P.K.: Tracking user mobility to detect suspicious behavior. In: SDM, pp. 871–882. SIAM (2009)Google Scholar
  34. 34.
    Sun, B., Yu, F., Wu, K., Leung, V.: Mobility-based anomaly detection in cellular mobile networks. In: Proceedings of the 3rd ACM Workshop on Wireless Security, pp. 61–69. ACM (2004)Google Scholar
  35. 35.
    Yan, G., Eidenbenz, S., Sun, B.: Mobi-watchdog: you can steal, but you can’t run!. In: Proceedings of the Second ACM Conference on Wireless Network Security, pp. 139–150. ACM (2009)Google Scholar
  36. 36.
    Yazji, S., Scheuermann, P., Dick, R.P., Trajcevski, G., Jin, R.: Efficient location aware intrusion detection to protect mobile devices. Pers. Ubiquit. Comput. 18(1), 143–162 (2014)CrossRefGoogle Scholar
  37. 37.
    Kałużny, P.: Evaluation of trajectory based mobility profile in user behavioral authentication based on telecom data. Master thesis, Poznań University of Economics and Business, Poznań (2017)Google Scholar
  38. 38.
    Jankowiak, P., Kałużny, P.: Human mobility profiling based on call detail records analysis. Bachelor thesis, Poznań University of Economics and Business, Poznań (2015)Google Scholar
  39. 39.
    Kayacik, H.G., Just, M., Baillie, L., Aspinall, D., Micallef, N.: Data driven authentication: on the effectiveness of user behaviour modelling with mobile device sensors. arXiv preprint: arXiv:1410.7743 (2014)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Poznań University of Economics and BusinessPoznańPoland

Personalised recommendations