Skip to main content

State-of-the-Art Low-Noise Amplifiers in the Millimeter-Wave Regime

  • Chapter
  • First Online:
Millimeter-Wave Low Noise Amplifiers

Part of the book series: Signals and Communication Technology ((SCT))

  • 1518 Accesses

Abstract

While the previous chapters (Part I) encompassed LNAs operating in different regimes, not only the millimeter-wave, this chapter focuses on state-of-the-art LNAs for millimeter-wave applications only. A number of configurations published in the last five to ten years are explored, with the emphasis on their advantages over other published works, as well as disadvantages and the identification of their weaknesses. Suggestions for improvement of some configurations are listed as the chapter progresses; however, ways to optimize LNAs and their components will be discussed in detail in two more chapters, Chaps. 8 and 9, with some final remarks left for Chap. 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarado J, Kornegay KT, Dawn D, Pinel S, Laskar J (2007) 60-GHz LNA using a hybrid transmission line and conductive path to ground technique in silicon. In: 2007 IEEE radio frequency integrated circuits (RFIC) symposium, Honolulu, pp 685–688

    Google Scholar 

  2. Chen AYK, Baeyens Y, Chen YK, Lin J (2010) A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging. IEEE Microwave Wirel Compon Lett 20(2):103–105

    Article  Google Scholar 

  3. Min BW, Rebeiz GM (2007) Ka-band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microwave Wirel Compon Lett 17(12):891–893

    Article  Google Scholar 

  4. Shahramian S, Baeyens Y, Kaneda N, Chen YK (2013) A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE J Solid-State Circuits 48(15):1113–1125

    Article  Google Scholar 

  5. Yeh HC, Liao ZY, Wang H (2011) Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology. IEEE Trans Microw Theory Tech 59(12):3441–3454

    Article  Google Scholar 

  6. Feng G, Boon CC, Meng F, Yi X, Li C (2016) An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microwave Wirel Compon Lett 26(2):134–136

    Article  Google Scholar 

  7. Yao T, Gordon MQ, Tang KK, Yau KH, Yang MT, Schvan P, Voinigescu SP (2007) Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J Solid-State Circuits 42(5):1044–1057

    Article  Google Scholar 

  8. Do VH, Subramanian V, Boeck G (2007) 60 GHz SiGe LNA. In: 14th IEEE international conference on circuits and systems ICECS 2007, Marrakech, pp 1209–1212

    Google Scholar 

  9. Tsai MH, Hsu SS, Hsueh FL, Jou CP, Yeh TJ (2013) Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS. IEEE Trans Microw Theory Tech 61(1):553–561

    Article  Google Scholar 

  10. Öztürk E, Ng HJ, Winkler W, Kissinger D (2017) 0.1 mm2 SiGe BiCMOS RX/TX channel front-ends for 120 GHz phased array radar systems. In: 2017 IEEE 17th topical meeting on silicon monolithic integrated circuits in RF systems (SiRF), Phoenix, pp 50–53

    Google Scholar 

  11. Heller T, Cohen E, Socher E (2016) A, 102–129-GHz 39-dB gain 8.4-dB noise figure I/Q receiver frontend in 28-nm CMOS. IEEE Trans Microw Theory Tech 64(5):1535–1543

    Article  Google Scholar 

  12. Wu L, Leung HF, Luong HC (2017) Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation. IEEE Trans Circuits Syst I: Regul Pap 64(6):1626–1635

    Article  Google Scholar 

  13. Geha C, Nguyen C, Silva-Martinez J (2017) A wideband low-power-consumption 22–32.5-GHz 0.18-um BiCMOS active balun-LNA with IM2 cancellation using a transformer-coupled cascode-cascade topology. IEEE Trans Microw Theory Tech 65(2):536–547

    Article  Google Scholar 

  14. Li Z, Wang C, Li Q, Wang Z (2017) 60 GHz low-power LNA with high gm × R out transconductor stages in 65 nm CMOS. Electron Lett 53(4):279–281

    Article  Google Scholar 

  15. May JW, Rebeiz GM (2010) Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging. IEEE Trans Microw Theory Tech 58(5):1420–1430

    Article  Google Scholar 

  16. May JW, Rebeiz GM (2008) A W-band SiGe 1.5 V LNA for imaging applications. In: 2008 IEEE radio frequency integrated circuits symposium, Atlanta. pp 241–244

    Google Scholar 

  17. Ebrahimi N, Wu PY, Bagheri M, Buckwalter JF (2017) A 71–86-GHz phased array transceiver using wideband injection-locked oscillator phase shifters. IEEE Trans Microw Theory Tech 65(2):346–361

    Article  Google Scholar 

  18. Lin YS, Wang CC, Lee GL, Chen CC (2014) A high-performance low-noise amplifier for 71–76, 76–77, and 77–81 GHz communication systems in 90-NM CMOS. Microwave Opt Technol Lett 56(7):1673–1680

    Article  Google Scholar 

  19. Lee YT, Chiong CC, Niu DC, Wang H (2014) A high gain E-band MMIC LNA in GaAs 0.1-μm pHEMT process for radio astronomy applications. In: 9th European microwave integrated circuit conference (EuMIC), Rome, pp 456–459

    Google Scholar 

  20. Pantoli L, Barigelli A, Leuzzi G, Vitulli F (2014) Analysis and design of a Q/V-band low-noise amplifier in GaAs-based 0.1 µm pHEMT technology. IET Microwaves Antennas Propag 10(14):1500–1506

    Article  Google Scholar 

  21. Sato M, Takahashi T, Tatsuya H (2010) 68–110-GHz-band low-noise amplifier using current reuse topology. IEEE Trans Microw Theory Tech 58(7):1910–1916

    Article  Google Scholar 

  22. Feng G, Boon CC, Meng F, Yi X, Yang K, Li C, Luong HC (2017) Pole-converging intrastage bandwidth extension technique for wideband amplifiers. IEEE J Solid-State Circuits 52(3):769–780

    Article  Google Scholar 

  23. Fritsche D, Tretter G, Stärke P, Carta C, Ellinger F (2017) A low-power SiGe BiCMOS 190-GHz receiver with 47-dB conversion gain and 11-dB noise figure for ultralarge-bandwidth applications. IEEE Trans Microw Theory Tech 65(10)

    Google Scholar 

  24. Fritsche D, Tretter G, Carta C, Ellinger F (2015) Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Tech 63(6):1910–1922

    Article  Google Scholar 

  25. Feng G, Boon CC, Meng F, Yi X, Li C (2016) An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microwave Wirel Compon Lett 26(2):134–136

    Article  Google Scholar 

  26. Fritsche D, Tretter G, Carta C, Ellinger F (2015) Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Tech 63(6):1910–1922

    Article  Google Scholar 

  27. Schmalz K, Borngraber J, Mao Y, Rucker H, Weber R (2012) A 245 GHz LNA in SiGe technology. IEEE Microwave Wirel Compon Lett 22(10):533–535

    Article  Google Scholar 

  28. Mao Y, Schmalz K, Borngraber J, Scheytt JC (2012) 245-GHz LNA, mixer, and subharmonic receiver in SiGe technology. EEE Trans Microwave Theory Tech 60(12):3823–3833

    Article  Google Scholar 

  29. Varonen M, Larkoski P, Fung A, Samoska L, Kangaslahti P, Gaier T, Lai R, Sarkozy S (2012) 160–270-GHz InP HEMT MMIC low-noise amplifiers. In: 2012 IEEE compound semiconductor integrated circuit symposium, La Jolla, pp 1–4

    Google Scholar 

  30. Diebold S, Kühn J, Hülsmann A, Leuther A, Dahlberg K, Jukkala P, Kantanen M, Kallfass I, Zwick T, Närhi T (2014) Low noise amplifier MMICs for 325 GHz radiometric applications. In: 2014 IEEE Asia-Pacific microwave conference (APMC), Sendai, pp 151–153

    Google Scholar 

  31. Deal WR, Zamora A, Leong K, Liu PH, Yoshida W, Zhou J, Lange M, Gorospe B, Nguyen K, Mei XB (2016) A 670 GHz low noise amplifier with less than 10 dB packaged noise figure. IEEE Microwave Wirel Compon Lett 26(10):837–839

    Article  Google Scholar 

  32. Deal WR, Leong KMKH, Radisic V, Sarkozy S, Gorospe B, Lee J, Liu PH, Yoshida W, Zhou J, Lange M et al (2011) Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave Wirel Compon Lett 21(7):368–370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2018). State-of-the-Art Low-Noise Amplifiers in the Millimeter-Wave Regime. In: Millimeter-Wave Low Noise Amplifiers. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69020-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69020-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69019-3

  • Online ISBN: 978-3-319-69020-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics