Skip to main content

Passives for Low-Noise Amplifiers

  • Chapter
  • First Online:
  • 1243 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter looks at numerous alternatives for implementing passive components. It covers the basic theory of transmission lines and illustrate how transmission-line terminations can be used to turn the line into a resistive, capacitive or inductive distributed element. Various lumped topologies for resistors, capacitors and inductors are discussed in detail, whether implemented on chip, on package, or discreetly. Active alternatives for implementation of passives is also considered. Emerging technologies for the implementation of passives, such as micro-electro-mechanical systems (MEMS) or other fabrication methods are also mentioned. In view of its importance for LNA design, a substantial portion of this chapter is dedicated to different inductor implementations and modeling of inductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rappaport TS, Murdock JN, Gutierrez F (2011) State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE 99(8):1390–1436

    Google Scholar 

  2. Pozar M (2012) Microwave engineering, 4th edn. Wiley, Hoboken

    Google Scholar 

  3. Ludwig R, Bretchko P (2000) RF circuit design: theory and applications, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Chang W, Jeon GI, Park YR, Mun JK (2014) X-band MMIC low-noise amplifier MMIC on SiC substrate using 0.25-μm ALGaN/GaN HEMT technology. Microwave Opt Technol Lett 56(1):96–99

    Article  Google Scholar 

  5. Chaturvedi S, Bozanic M, Sinha S (2017) Millimeter wave passive bandpass filters. Microwave J 60(1):98–108

    Google Scholar 

  6. Bowick C, Blyler J, Ajluni C (2008) RF circuit design, 2nd edn. Elsevier, Burlington

    Google Scholar 

  7. Ghadiri A, Moez K (2012) High-quality-factor active capacitors for millimeter-wave applications. IEEE Trans Microw Theory Tech 60(12):3710–3718

    Article  Google Scholar 

  8. Bahl IJ (2003) Lumped elements for RF and microwave circuits, 1st edn. Artech House, Norwood

    Google Scholar 

  9. Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications, 1st edn. Wiley, Chichester

    Google Scholar 

  10. Floyd BA, Reynolds SK, Pfeiffer UR, Zwick T, Beukema T, Gaucher B (2005) SiGe bipolar transceiver circuits operating at 60 GHz. IEEE J Solid-State Circuits 40(1):156–167

    Article  Google Scholar 

  11. Božanić M, Sinha S (2015) RF IC performance optimization by synthesizing optimum inductors. In: Computational intelligence in analog and mixed-signal (AMS) and radio-frequency (RF) circuit design, 1st edn. Springer Nature, Cham, pp 297–330

    Google Scholar 

  12. Uyanik H, Tarim N (2007) Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog Integr Circ Signal Process 51:191–194

    Article  Google Scholar 

  13. Bakken T, Choma J (2003) Gyrator-based synthesis of active on-chip inductances. Analog Integr Circ Signal Process 34(3):171–191

    Article  Google Scholar 

  14. Ler CL, A’ain AKB, Kordesh AV (2008) CMOS source degenerated differential active inductor. Electron Lett 44(3):196–197

    Article  Google Scholar 

  15. Chen A, Lo HY (2012) Semiconductor packaging: materials interaction and reliability, 1st edn. CRC Press, Boca Ranton

    Google Scholar 

  16. Murad SAZ, Pokharel RK, Kanaya H, Yoshida K, Nizhnik O (2010) A 2.4-GHz 0.18-µm CMOS class E single-ended switching power amplifier with a self-biased cascode. Int J Electron Commun 64(9):813–818

    Google Scholar 

  17. Khatri H, Gudem PS, Larson LE (2008) Integrated RF interference suppression filter design using bond-wire inductors. IEEE Trans Microw Theory Tech 56(5):1024–1034

    Article  Google Scholar 

  18. Kazimierczuk MK (2015) RF power amplifiers, 2nd edn. Wiley, Chiechester

    Google Scholar 

  19. Yao T, Gordon MQ, Tang KK, Yau KH, Yang MT, Schvan P, Voinigescu SP (2007) Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J Solid-State Circuits 42(5):1044–1057

    Article  Google Scholar 

  20. Chevalier P, Avenier G, Ribes G, Montagné A, Canderle E, Céli D, Derrier N, Deglise C, Durand C, Quémerais T et al (2014) A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT/370 GHz fMAX HBT and high-Q millimeter-wave passives. In: 2014 IEEE international electron devices meeting, San Francisco, pp 3–9

    Google Scholar 

  21. Mohan SS, Hershenson M, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid-State Circuits 34(10):1419–1424

    Article  Google Scholar 

  22. Niknejad AM, Meyer RG (2000) Design, simulation and application of inductors and transformers for Si RF ICs, 1st edn. Springer, New York

    Google Scholar 

  23. Xu X, Li P, Cai M, Han B (2012) Design of novel high-Q-factor multipath stacked on-chip spiral inductors. IEEE Trans Electron Devices 59(8):2011–2018

    Article  Google Scholar 

  24. Razavi B (2008) A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE J Solid-State Circ 43(2):477–485

    Article  Google Scholar 

  25. Wang TP, Li ZW, Tsai HY (2013) Performance improvement of a 0.18-μm CMOS microwave amplifier using micromachined suspended Inductors: theory and experiment. IEEE Trans Electron Devices 60(5):1738–1744

    Article  Google Scholar 

  26. Wang H, Sun L, Yu Z, Gao J (2012) Analysis of modeling approaches for on-chip spiral inductors. Int J RF Microwave Comput Aided Eng 22(3):377–386

    Article  Google Scholar 

  27. Musunuri S, Chapman PL, Zou J, Liu C (2005) Design issues for monolithic DC–DC converters. IEEE Trans Power Electron 20(3):639–649

    Article  Google Scholar 

  28. Božanić M, Sinha S (2016) Power Amplifiers for the S-, C-, X-and Ku-bands. Springer Nature, Cham

    Google Scholar 

  29. Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–568

    Article  Google Scholar 

  30. Huo X, Chan PCH, Chen KJ, Luong HC (2006) A physical model for on-chip spiral inductors with accurate substrate modeling. IEEE Trans Electron Devices 53(12):2942–2949

    Article  Google Scholar 

  31. Sun H, Liu Z, Zhao J, Wang L, Zhu J (2008) The enhancement of Q-factor of planar spiral inductor with low-temperature annealing. IEEE Trans Electron Devices 55(3):931–936

    Article  Google Scholar 

  32. Lee CY, Chen TS, Deng JDS, Kao CH (2005) A simple systematic spiral inductor design with perfected Q improvement for CMOS RFIC application. IEEE Trans Microw Theory Tech 53(2):523–528

    Article  Google Scholar 

  33. Xue C, Yao F, Cheng B, Wang Q (2008) Effect of the silicon substrate structure on chip spiral inductor. Front Electr Electron Eng China 3(1):110–115

    Article  Google Scholar 

  34. Koutsoyannopoulos YK, Papananos Y. Systematic analysis and modeling of integrated inductors and transformers in RF IC design. IEEE Trans Circ Syst Analog Digital Signal Process 47(8):699–713

    Google Scholar 

  35. Watson AC, Melendy D, Francis P, Hwang K, Weisshaar A (2004) A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICs. IEEE Trans Microw Theory Tech 52(3):849–857

    Article  Google Scholar 

  36. Lee KY, Mohammadi S, Bhattacharya PK, Katehi LPB (2006) Compact models based on transmission-line concept for integrated capacitors and inductors. IEEE Trans Microw Theory Tech 54(12):4141–4148

    Article  Google Scholar 

  37. Gao Z, Kang K, Jiang Z, Wu Y, Zhao C, Ban YL, Sun L, Xue Q, Yin WY (2015) Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region. IEEE Trans Electron Devices 62(12):3957–3964

    Article  Google Scholar 

  38. Hastings A (2006) The art of analog layout, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  39. Khoo YM, Lim TG, Ho SW, Li R, Xiong YZ, Zhang X (2012) Enhancement of silicon-based inductor Q-factor using polymer cavity. IEEE Trans Compon Packag Manuf Technol 2(12):1973–1979

    Article  Google Scholar 

  40. Lin JW, Chen CC, Cheng YT (2005) A robust high-Q micromachined RF inductor for RFIC applications. IEEE Trans Electron Device 52(7):1489–1496

    Article  Google Scholar 

  41. Gu L, Li X (2007) High-Q solenoid inductors with a CMOS-compatible concave-suspending MEMS process. J Microelectromech Syst 16(5):1162–1172

    Article  Google Scholar 

  42. Schirmer NC, Hesselbarth J, Ströhle S, Burg BR, Tiwari MK, Poulikakos D (2010) Millimeter-wave on-chip solenoid inductor by on-demand three-dimensional printing of colloidal nanoparticles. Appl Phys Lett 97(24):243109

    Article  Google Scholar 

  43. Chua LC, Fork DK, Van Schuylenbergh K, Lu JP (2003) Out-of-plane high-Q inductors on low-resistance silicon. J Microelectromech Syst 12(6):989–995

    Article  Google Scholar 

  44. Masu K, Okada K, Ito H (2006) RF passive components using metal line on Si CMOS. Trans Electron 89(6):681–691

    Article  Google Scholar 

  45. Vroubel M, Zhuang Y, Rejaei B, Burghartz JN (2004) Integrated tunable magnetic RF inductor. IEEE Electron Device Lett 25(12):787–789

    Article  Google Scholar 

  46. Seo S, N. R, Choi, H., Jeong Y (2007) Novel high-Q inductor using active inductor structure and feedback parallel resonance circuit. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Honolulu

    Google Scholar 

  47. Zine-El-Abidine I, Okoniewski M. High quality factor micromachined toroid and solenoid inductors. In: Proceedings of the 37th European Microwave Conference; 2007; Munich

    Google Scholar 

  48. Long JR (2000) Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circ 35(9):1368–1382

    Article  Google Scholar 

  49. Heller T, Cohen E, Socher E (2016) A, 102–129-GHz 39-dB Gain 8.4-dB noise figure I/Q receiver frontend in 28-nm CMOS. IEEE Trans Microw Theory Tech 64(5):1535–1543

    Article  Google Scholar 

  50. Razavi B (2010) Cognitive radio design challenges and techniques. IEEE J Solid-State Circuits 45(8):1542–1553

    Article  Google Scholar 

  51. Feng G, Boon CC, Meng F, Yi X, Yang K, Li C, Luong HC (2017) Pole-converging intrastage bandwidth extension technique for wideband amplifiers. IEEE J Solid-State Circuits 52(3):769–780

    Article  Google Scholar 

  52. Burdin F, Podevin F, Franc AL, Pistono E, Gloria D, Ferrari P (2011) Miniaturized low-loss millimeter-wave rat-race balun in a CMOS 28 nm technology. In: 2011 IEEE MTT-S international microwave workshop series on millimeter wave integration technologies (IMWS), Sitges, pp 73–76

    Google Scholar 

  53. Fathelbab WM, Steer MB (2005) New classes of miniaturized planar Marchand baluns. IEEE Trans Microw Theory Tech 53(4):1211–1220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2018). Passives for Low-Noise Amplifiers. In: Millimeter-Wave Low Noise Amplifiers. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69020-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69020-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69019-3

  • Online ISBN: 978-3-319-69020-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics