DIM Reader: Dual Interaction Model for Machine Comprehension

  • Zhuang LiuEmail author
  • Degen Huang
  • Kaiyu Huang
  • Jing Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10565)


Enabling a computer to understand a document so that it can answer comprehension questions is a central, yet unsolved goal of Natural Language Processing, so reading comprehension of text is an important problem in NLP research. In this paper, we propose a novel dual interaction model (called DIM Reader) (Our code is available at, which constructs dual iterative alternating attention mechanism over multiple hops. The proposed DIM Reader continually refines its view of the query and document while aggregating the information required to answer a query, aiming to compute the attentions not only for the document but also the query side, which will benefit from the mutual information. DIM Reader makes use of multiple turns to effectively exploit and perform deeper inference among queries, documents. We conduct extensive experiments on CNN/DailyMail News datasets, and our model achieves the best results on both machine comprehension datasets among almost published results.


Machine comprehension Bi-directional attention Dual interaction model Cloze-style 



We would like to thank the reviewers for their helpful comments and suggestions to improve the quality of the paper. This research is supported by National Natural Science Foundation of China (No. 61672127).


  1. 1.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  2. 2.
    Caiming Xiong, V.Z., Socher, R.: Dynamic coattention networks for question answering. In: Proceedings of ICLR (2017)Google Scholar
  3. 3.
    Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/daily mail reading comprehension task. arXiv preprint arXiv:1606.02858 (2016)
  4. 4.
    Chollet, F.: Keras (2015)Google Scholar
  5. 5.
    Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423 (2016)
  6. 6.
    Cui, Y., Liu, T., Chen, Z., Wang, S., Hu, G.: Consensus attention-based neural networks for Chinese reading comprehension. arXiv preprint arXiv:1607.02250 (2016)
  7. 7.
    Chen, D., Adam Fisch, J.W., Bordes, A.: Reading wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051 (2017)
  8. 8.
    Dhingra, B., Liu, H., Cohen, W.W., Salakhutdinov, R.: Gated-attention readers for text comprehension. arXiv preprint arXiv:1606.01549 (2016)
  9. 9.
    Dirk Weissenborn, G.W., Seiffe, L.: FastQA: a simple and efficient neural architecture for question answering. arXiv preprint arXiv:1703.04816 (2017)
  10. 10.
    Gong, Y., Bowman, S.R.: Ruminating reader: reasoning with gated multi-hop attention. arXiv preprint arXiv:1704.07415 (2017)
  11. 11.
    Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in Neural Information Processing Systems, pp. 1693–1701 (2015)Google Scholar
  12. 12.
    Hill, F., Bordes, A., Chopra, S., Weston, J.: The Goldilocks principle: reading children’s books with explicit memory representations. arXiv preprint arXiv:1511.02301 (2015)
  13. 13.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  14. 14.
    Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551 (2017)
  15. 15.
    Zhang, J., Xiaodan Zhu, Q., Jiang, H.: Exploring question understanding and adaptation in neural-network-based question answering. arXiv preprint arXiv:1703.04617 (2017)
  16. 16.
    Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the attention sum reader network. arXiv preprint arXiv:1603.01547 (2016)
  17. 17.
    Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
  18. 18.
    Kinga, D., Adam, J.B.: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)Google Scholar
  19. 19.
    Liu, T., Cui, Y., Yin, Q., Wang, S., Zhang, W., Hu, G.: Generating and exploiting large-scale pseudo training data for zero pronoun resolution. arXiv preprint arXiv:1606.01603 (2016)
  20. 20.
    Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
  21. 21.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  22. 22.
    Seo, M., Aniruddha Kembhavi, A.F., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. In: Proceedings of ICLR (2017)Google Scholar
  23. 23.
    Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
  24. 24.
    Richardson, M., Burges, C.J., Renshaw, E.: MCTest: a challenge dataset for the open-domain machine comprehension of text. In: EMNLP, vol. 3, p. 4 (2013)Google Scholar
  25. 25.
    Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)
  26. 26.
    Sordoni, A., Bachman, P., Trischler, A., Bengio, Y.: Iterative alternating neural attention for machine reading. arXiv preprint arXiv:1606.02245 (2016)
  27. 27.
    Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)Google Scholar
  28. 28.
    Taylor, W.L.: Cloze procedure: a new tool for measuring readability. Journalism Bull. 30(4), 415–433 (1953)CrossRefGoogle Scholar
  29. 29.
    Trischler, A., Ye, Z., Yuan, X., Suleman, K.: Natural language comprehension with the EpiReader. arXiv preprint arXiv:1606.02270 (2016)
  30. 30.
    Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)Google Scholar
  31. 31.
    Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer pointer. In: Proceedings of ICLR (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhuang Liu
    • 1
    Email author
  • Degen Huang
    • 1
  • Kaiyu Huang
    • 1
  • Jing Zhang
    • 1
  1. 1.School of Computer Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations