Unsupervised Joint Entity Linking over Question Answering Pair with Global Knowledge

  • Cao LiuEmail author
  • Shizhu He
  • Hang Yang
  • Kang Liu
  • Jun Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10565)


We consider the task of entity linking over question answering pair (QA-pair). In conventional approaches of entity linking, all the entities whether in one sentence or not are considered the same. We focus on entity linking over QA-pair, in which question entity and answer entity are no longer fully equivalent and they are with the explicit semantic relation. We propose an unsupervised method which utilizes global knowledge of QA-pair in the knowledge base(KB). Firstly, we collect large-scale Chinese QA-pairs and their corresponding triples in the knowledge base. Then mining global knowledge such as the probability of relation and linking similarity between question entity and answer entity. Finally integrating global knowledge and other basic features as well as constraints by integral linear programming(ILP) with an unsupervised method. The experimental results show that each proposed global knowledge improves performance. Our best F-measure on QA-pairs is 53.7%, significantly increased 6.5% comparing with the competitive baseline.


Joint entity linking Question answering pair Global knowledge Integral linear programming 



This work was supported by the Natural Science Foundation of China (No. 61533018) and the National Basic Research Program of China (No. 2014CB340503). And this research work was also supported by Google through focused research awards program.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_52 CrossRefGoogle Scholar
  2. 2.
    Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking in queries. In: Proceedings of the Eight ACM International Conference on Web Search and Data Mining, WSDM 15, NY, USA. ACM, New York (2015)Google Scholar
  3. 3.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. AcM (2008)Google Scholar
  4. 4.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)Google Scholar
  5. 5.
    Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. Eacl 6, 9–16 (2006)Google Scholar
  6. 6.
    Csomai, A., Mihalcea, R.: Linking documents to encyclopedic knowledge. IEEE Intell. Syst. 23(5) (2008)Google Scholar
  7. 7.
    Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data (2007)Google Scholar
  8. 8.
    Dai, Z., Li, L., Xu, W.: CFO: conditional focused neural question answering with large-scale knowledge bases. arXiv preprint arXiv:1606.01994 (2016)
  9. 9.
    Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. ACM (2011)Google Scholar
  10. 10.
    Han, X., Zhao, J.: Named entity disambiguation by leveraging wikipedia semantic knowledge. In: Proceedings of the 18th ACM Conference on Information and Nowledge Management, pp. 215–224. ACM (2009)Google Scholar
  11. 11.
    Khachiyan, L.G.: Polynomial algorithms in linear programming. USSR Comput. Mathe. Mathe. Phys. 20(1), 53–72 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McTear, M., Callejas, Z., Griol, D.: The Conversational Interface. Springer, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with Wikipedia. In: Proceedings of the AAAI WikiAI workshop, vol. 1, pp. 19–24 (2008)Google Scholar
  14. 14.
    Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and knowledge Management, pp. 509–518. ACM (2008)Google Scholar
  15. 15.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1982)Google Scholar
  16. 16.
    Pappu, A., Blanco, R., Mehdad, Y., Stent, A., Thadani, K.: Lightweight multilingual entity extraction and linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 17, NY, USA. ACM, New York (2017)Google Scholar
  17. 17.
    Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase via relation extraction and textual evidence. arXiv preprint arXiv:1603.00957 (2016)
  18. 18.
    Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.: Natural language questions for the web of data. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 379–390. Association for Computational Linguistics (2012)Google Scholar
  19. 19.
    Yang, Y., Chang, M.W.: S-mart: novel tree-based structured learning algorithms applied to tweet entity linking. arXiv preprint arXiv:1609.08075 (2016)
  20. 20.
    Yin, J., Jiang, X., Lu, Z., Shang, L., Li, H., Li, X.: Neural generative question answering. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Neural (2016)Google Scholar
  21. 21.
    Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by attentive convolutional neural network. arXiv preprint arXiv:1606.03391 (2016)
  22. 22.
    Zhou, Y., Nie, L., Rouhani-Kalleh, O., Vasile, F., Gaffney, S.: Resolving surface forms to Wikipedia topics. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1335–1343. Association for Computational Linguistics (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cao Liu
    • 1
    • 2
    Email author
  • Shizhu He
    • 1
  • Hang Yang
    • 1
  • Kang Liu
    • 1
  • Jun Zhao
    • 1
    • 2
  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations