Skip to main content

Conjugate Immunofluorescence—SEM Array Tomography for Studying Mammalian Synapses and Axons

  • Chapter
  • First Online:
Cellular Imaging

Abstract

Conjugate immunofluorescence—SEM array tomography enables the imaging of both the molecular content and the ultrastructure of tissues. The method is based on physical ultrathin serial sectioning, immunostaining and acquiring fluorescence and electron microscopy images of resin embedded tissues, followed by computational volume reconstruction and analysis. Conjugate immunofluorescence—SEM array tomography has been used for the study of brain tissue, and in particular for the characterization of diverse synapses and axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Roth, The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem. Cell Biol. 106(1), 1–8 (1996)

    Article  MathSciNet  Google Scholar 

  2. B.L. Wang, L.I. Larsson, Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microscopical double and triple staining method employing primary antibodies from the same species. Histochemistry 83(1), 47–56 (1985)

    Article  Google Scholar 

  3. D.A. Meyer, J.A. Oliver, R.M. Albrecht, Colloidal palladium particles of different shapes for electron microscopy labeling. Microsc. Microanal. 16(1), 33–42 (2010)

    Article  ADS  Google Scholar 

  4. B.N.G. Giepmans, T.J. Deerinck, B.L. Smarr, Y.Z. Jones, M.H. Ellisman, Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods 2, 743–749 (2005)

    Article  Google Scholar 

  5. D.R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P.K. Lo, A.S. Trifonov, H. Park, J.W. Lichtman, R.L. Walsworth, Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep. 2, 865 (2012)

    Article  ADS  Google Scholar 

  6. W. Schubert, B. Bonnekoh, A.J. Pommer, L. Philipsen, R. Böckelmann, Y. Malykh, H. Gollnick, M. Friedenberger, M. Bode, A.W. Dress, Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24(10), 1270–1278 (2006)

    Article  Google Scholar 

  7. M. Bode, M. Irmler, M. Friedenberger, C. May, K. Jung, C. Stephan, H.E. Meyer, C. Lach, R. Hillert, A. Krusche, J. Beckers, K. Marcus, W. Schubert, Interlocking transcriptomics, proteomics and toponomics technologies for brain tissue analysis in murine hippocampus. Proteomics 8(6), 1170–1178 (2008)

    Article  Google Scholar 

  8. W. Schubert, Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems. J. Mol. Recognit. 27(1), 3–18 (2014)

    Article  Google Scholar 

  9. K.D. Micheva, S.J. Smith, Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1), 25–36 (2007)

    Article  Google Scholar 

  10. K.D. Micheva, B. Busse, N.C. Weiler, N. O’Rourke, S.J. Smith, Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68(4), 639–653 (2010)

    Article  Google Scholar 

  11. G. Wang, S.J. Smith, Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens. PLoS Comput. Biol. 8(8), e1002671 (2012)

    Article  ADS  Google Scholar 

  12. A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 68(5), 843–856 (2010)

    Article  Google Scholar 

  13. R. Jungmann, C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, F.C. Simmel, Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. NanoLett 10, 4756–4761 (2010)

    Article  ADS  Google Scholar 

  14. T. Kiuchi, M. Higuchi, A. Takamura, M. Maruoka, N. Watanabe, Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. Nat. Methods 12, 743–746 (2015)

    Article  Google Scholar 

  15. J.R. Anderson, B.W. Jones, J.-H. Yang, M.V. Shaw, C.B. Watt, P. Koshevoy, J. Spaltenstein, E. Jurrus, U.V. Kannan, R. Whitaker, D. Mastronarde, T. Tasdizen, R. Marc, A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol. 7(3), e1000074 (2009)

    Article  Google Scholar 

  16. J.R. Anderson, B.W. Jones, C.B. Watt, M.V. Shaw, J.H. Yang, D. Demill, J.S. Lauritzen, Y. Lin, K.D. Rapp, D. Mastronarde, P. Koshevoy, B. Grimm, T. Tasdizen, R. Whitaker, R.E. Marc, Exploring the retinal connectome. Mol. Vis. 17, 355–379 (2011)

    Google Scholar 

  17. D. Oberti, M.A. Kirschmann, R.H. Hahnloser, Projection neuron circuits resolved using correlative array tomography. Front Neurosci. 5, 50 (2011)

    Article  Google Scholar 

  18. F. Collman, J. Buchanan, K.D. Phend, K.D. Micheva, R.J. Weinberg, S.J. Smith, Mapping synapses by conjugate light-electron array tomography. J. Neurosci. 35(14), 5792–5807 (2015)

    Article  Google Scholar 

  19. E.B. Bloss, M.S. Cembrowski, B. Karsh, J. Colonell, R.D. Fetter, N. Spruston, Structured dendritic inhibition supports branch-selective integration in CA1 pyramidal cells. Neuron 89(5), 1016–1030 (2016)

    Article  Google Scholar 

  20. R. Shahidi, E.A. Williams, M. Conzelmann, A. Asadulina, C. Verasztó, S. Jasek, L.A. Bezares-Calderón, G. Jékely, A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. Elife 4, e11147 (2015)

    Article  Google Scholar 

  21. J. Storm-Mathisen, A.K. Leknes, A.T. Bore, J.L. Vaaland, P. Edminson, F.M. Haug, O.P. Ottersen, First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301(5900), 517–520 (1983)

    Article  ADS  Google Scholar 

  22. P. Somogyi, A.J. Hodgson, Antisera to gamma-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J. Histochem. Cytochem. 33(3), 249–257 (1985)

    Article  Google Scholar 

  23. R.E. Marc, B.W. Jones, C.B. Watt, J.R. Anderson, C. Sigulinsky, S. Lauritzen, Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 37, 141–162 (2013)

    Article  Google Scholar 

  24. G. Pelletier, R. Puviani, O. Bosler, L. Descarries, Immunocytochemical detection of peptides in osmicated and plastic-embedded tissue. An electron microscopic study. J. Histochem. Cytochem. 29(6), 759–764 (1981)

    Article  Google Scholar 

  25. A. Merighi, F. Cruz, A. Coimbra, Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J. Neurosci. Methods 42(1–2), 105–113 (1992)

    Article  Google Scholar 

  26. A.J. Nielson, W.P. Griffith, Tissue fixation by osmium tetroxide. A possible role for proteins. J. Histochem. Cytochem. 27(5), 997–999 (1979)

    Article  Google Scholar 

  27. B.E. Causton, Does the embedding chemistry interact with tissue? in The Science of Biological Specimen Preparation 1985, ed. by M. Müller, R.P. Becker, A. Boyde, J.J. Wolosewick (SEM Inc, AMF O’Hare, Chicago), pp. 209–214

    Google Scholar 

  28. S.H. Brorson, F. Skjørten, The theoretical relationship of immunogold labeling on acrylic sections and epoxy sections. Micron 27(3–4), 193–201 (1996)

    Article  Google Scholar 

  29. G.R. Newman, J.A. Hobot, Modern acrylics for post-embedding immunostaining techniques. J. Histochem. Cytochem. 35(9), 971–981 (1987)

    Article  Google Scholar 

  30. E. Kellenberger, The Response of Biological Macromolecules and Supramolecular Structures to the Physics of Specimen Cryopreparation, in Cryotechniques in Biological Electron Microscopy, ed. by R.A. Steinbrecht, K. Zierold (Springer, Heidelberg, 1987), pp. 35–63

    Chapter  Google Scholar 

  31. A. Baude, Z. Nusser, E. Molnár, R.A. McIlhinney, P. Somogyi, High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69, 1031–1055 (1995)

    Article  Google Scholar 

  32. Z. Nusser, J.D. Roberts, A. Baude, J.G. Richards, W. Sieghart, P. Somogyi, Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur. J. Neurosci. 7, 630–646 (1995)

    Article  Google Scholar 

  33. A. Matsubara, J.H. Laake, S. Davanger, S. Usami, O.P. Ottersen, Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457–4467 (1996)

    Google Scholar 

  34. K.W. Roche, C.D. Ly, R.S. Petralia, Y.X. Wang, A.W. McGee, D.S. Bredt, R.J. Wenthold, Postsynaptic density-93 interacts with the delta2 glutamate receptor subunit at parallel fiber synapses. J. Neurosci. 19, 3926–3934 (1999)

    Google Scholar 

  35. L.H. Bergersen, J. Storm-Mathisen, V. Gundersen, Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat. Protoc. 3, 144–152 (2008)

    Article  Google Scholar 

  36. A.L. Jacob, R.J. Weinberg, The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25, 798–812 (2015)

    Article  Google Scholar 

  37. J.B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, New York, 1995)

    Book  Google Scholar 

  38. R. Heintzmann, C. Cremer, Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE 3568, 185–196 (1999)

    Article  ADS  Google Scholar 

  39. M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000)

    Article  Google Scholar 

  40. W.J. Wang, H.G. Tay, R. Soni, G.S. Perumal, M.G. Goll, F.P. Macaluso, J.M. Asara, J.D. Amack, M.F. Tsou, CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat. Cell Biol. 15(6), 591–601 (2013)

    Article  Google Scholar 

  41. C.J. Peddie, K. Blight, E. Wilson, C. Melia, J. Marrison, R. Carzaniga, M.C. Domart, P. O’Toole, B. Larijani, L.M. Collinson, Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143, 3–14 (2014)

    Article  Google Scholar 

  42. P. Somogyi, A.J. Hodgson, I.W. Chubb, B. Penke, A. Erdei, Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J. Histochem. Cytochem. 33, 240–248 (1985)

    Article  Google Scholar 

  43. O.P. Ottersen, J. Storm-Mathiesen, Localization of amino acid neurotransmitters by immunocytochemistry. Trends Neurosci. 10, 250–255 (1987)

    Article  Google Scholar 

  44. K. Weber, P.C. Rathke, M. Osborn, Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc. Natl. Acad. Sci. U S A 75(4), 1820–1824 (1978)

    Article  ADS  Google Scholar 

  45. M.C. Willingham, An alternative fixation-processing method for preembedding ultrastructural immunocytochemistry of cytoplasmic antigens: the GBS (glutaraldehyde-borohydride-saponin) procedure. J. Histochem. Cytochem. 31(6), 791–798 (1983)

    Article  Google Scholar 

  46. J.A. Terzakis, Uranyl acetate, a stain and a fixative. J. Ultrastruct. Res. 22, 168–184 (1968)

    Article  Google Scholar 

  47. M.A. Berryman, R.D. Rodewald, An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J. Histochem. Cytochem. 38, 159–170 (1990)

    Article  Google Scholar 

  48. K.D. Phend, A. Rustioni, R.J. Weinberg, An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292 (1995)

    Article  Google Scholar 

  49. A. Sawaguchi, S. Ide, Y. Goto, J. Kawano, T. Oinuma, T. Suganuma, A simple contrast enhancement by potassium permanganate oxidation for Lowicryl K4 M ultrathin sections prepared by high pressure freezing/freeze substitution. J. Microsc. 201, 77–83 (2001)

    Article  MathSciNet  Google Scholar 

  50. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)

    Article  Google Scholar 

  51. A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair, P. Tomancak, V. Hartenstein, R.J. Douglas, TrakEM2 software for neural circuit reconstruction. PLoS One 7(6), e38011 (2012)

    Article  ADS  Google Scholar 

  52. S. Saalfeld, R. Fetter, A. Cardona, P. Tomancak, Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9, 717–720 (2012)

    Article  Google Scholar 

  53. J.D. Robertson, Ultrastructure of two invertebrate synapses. Proc. Soc. Exp. Biol. Med. 82, 219–223 (1953)

    Article  Google Scholar 

  54. E.D. De Robertis, H.S. Bennett, Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol. 1(1), 47–58 (1955)

    Article  Google Scholar 

  55. S.L. Palay, Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2(4 Suppl), 193–202 (1956)

    Article  Google Scholar 

  56. R.T. Fremeau Jr., M.D. Troyer, I. Pahner, G.O. Nygaard, C.H. Tran, R.J. Reimer, E.E. Bellocchio, D. Fortin, J. Storm-Mathisen, R.H. Edwards, The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001)

    Article  Google Scholar 

  57. A. Graziano, X.B. Liu, K.D. Murray, E.G. Jones, Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J. Comp. Neurol. 507, 1258–1276 (2008)

    Article  Google Scholar 

  58. K.D. Micheva, D. Wolman, B.D. Mensh, E. Pax, J. Buchanan, S.J. Smith, D.D. Bock, A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. Elife 5. pii: e15784 (2016)

    Google Scholar 

  59. H. Pawelzik, D.I. Hughes, A.M. Thomson, Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–336 (2002)

    Google Scholar 

  60. D.D. Bock, W.C. Lee, A.M. Kerlin, M.L. Andermann, G. Hood, A.W. Wetzel, S. Yurgenson, E.R. Soucy, H.S. Kim, R.C. Reid, Network anatomy and in vivo physiology of visual cortical neurons. Nature 471(7337), 177–182 (2011)

    Article  ADS  Google Scholar 

  61. C. Beaulieu, P. Somogyi, Targets and quantitative distribution of GABAergic synapses in the visual cortex of the Cat. Eur. J. Neurosci. 2, 296–303 (1990)

    Article  Google Scholar 

  62. C. Beaulieu, Z. Kisvarday, P. Somogyi, M. Cynader, A. Cowey, Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb. Cortex. 2, 295–309 (1992)

    Article  Google Scholar 

  63. K.D. Micheva, C. Beaulieu, Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABAcircuitry. J. Comp. Neurol. 373, 340–354 (1996)

    Article  Google Scholar 

  64. R.R. Mize, R.H. Whitworth, B. Nunes-Cardozo, J. van der Want, Ultrastructural organization of GABA in the rabbit superior colliculus revealed by quantitative postembedding immunocytochemistry. J. Comp. Neurol. 341, 273–287 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina D. Micheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Micheva, K.D., Phend, K.D. (2018). Conjugate Immunofluorescence—SEM Array Tomography for Studying Mammalian Synapses and Axons. In: Hanssen, E. (eds) Cellular Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68997-5_6

Download citation

Publish with us

Policies and ethics