Skip to main content

Volume Scanning Electron Microscopy: Serial Block-Face Scanning Electron Microscopy Focussed Ion Beam Scanning Electron Microscopy

  • Chapter
  • First Online:
Book cover Cellular Imaging

Abstract

Volume scanning electron microscopy is renewing interest in electron microscopy by offering three dimensional visualisation of biological systems. Two main contributors to this are the Serial Block-Face SEM (SBEM) and Focused Ion Beam SEM (FIB-SEM). The resolution offered by the FIB-SEM makes it the go-to tool for studies at higher resolution over smaller areas, particularly for subcellular studies. Compared to FIB-SEM, SBEM gives a much larger field of view (FOV) with a reduced resolution and anisotropic data. These methods require specific considerations as compared to the more traditional transmission electron microscopy. One major consideration is the sample preparation which is an integral part of the entire process for volume SEM. In this chapter we discuss the two techniques from a more practical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Birch-Andersen, Reconstruction of the nuclear sites of Salmonella typhimurium from electron micrographs of serial sections. J. Gen. Microbiol. 13(2), 327–329 (1955)

    Article  Google Scholar 

  2. B.G. Bang, F.B. Bang, Graphic reconstruction of the third dimension from serial electron microphotographs. J. Ultrastruct. Res. 1, 138–146 (1957). doi:10.1016/S0022-5320(57)80002-1

    Article  Google Scholar 

  3. J.G. White, E. Southgate, J.N. Thomson, S. Brenner, The structure of the nervous system of the nematode Caenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. London 314, 1–341 (1986)

    Article  Google Scholar 

  4. K.L. Briggman, M. Helmstaedter, W. Denk, Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2012). doi:10.1038/nature09818

    Article  ADS  Google Scholar 

  5. W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS 2(11), e329–10 (2004). doi:10.1371/journal.pbio.0020329

    Article  Google Scholar 

  6. K. Narayan, S. Subramaniam, Focused ion beams in biology. Nat. Publishing Group 12, 1021–1031 (2015). doi:10.1038/nmeth.3623

    Google Scholar 

  7. G. Knott, H. Marchman, D. Wall, B. Lich, Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008). doi:10.1523/JNEUROSCI.3189-07.2008

    Article  Google Scholar 

  8. K.L. Briggman, W. Denk, Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562–570 (2006). doi:10.1016/j.conb.2006.08.010

    Article  Google Scholar 

  9. M.R. Russell, T.R. Lerner, J.J. Burden, D.O. Nkwe, A. Pelchen-Matthews, M.C. Domart, J. Durgan, A. Weston, M.L. Jones, C.J. Peddie, R. Carzaniga, O. Florey, M. Marsh, M.G. Gutierrez, L.M. Collinson, 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. J. Cell Sci. JCS 130(1), 188433–14 (2016). doi:10.1242/jcs.188433

  10. B. Titze, C. Genoud, Volume scanning electron microscopy for imaging biological ultrastructure. Biol. Cell 1–29 (2016). doi:10.1111/boc.201600024

  11. K.L. Briggman, D.D. Bock, Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161 (2012). doi:10.1016/j.conb.2011.10.022

    Article  Google Scholar 

  12. S.B. Leighton, SEM images of block faces, cut by a miniature microtome within the SEM-a technical note. Scan. Electron. Microsc. 2, 73–76 (1980)

    Google Scholar 

  13. M. de Goede, E. Johlin, B. Sciacca, F. Boughorbel, E.C. Garnett, 3D multi-energy deconvolution electron microscopy. Nanoscale 9, 684–689 (2017). doi:10.1039/C6NR07991A

    Article  Google Scholar 

  14. F. Boughorbel, E.G.T. Bosch, V. Kooijman, B. Lich, F, de Jong, Charged particale microscopy imaging method. 1–15 (2013)

    Google Scholar 

  15. F. Boughorbel, X. Zhuge, P. Potocek, B. Lich, SEM 3D reconstruction of stained bulk samples using landing energy variation and deconvolution. Microsc. Microanal. 1–2 (2012). doi:10.1017/S1431927612004655

  16. A. Kremer, S. Lippens, S. Bartunkova, B. Asselbergh, C. Blanpain, M. Fendrych, A. Goosens, M. Holt, S. Janssens, M. Krols, J.C. Larsimont, C. McGuire, M.K. Nowack, X. Saelens, A. Schertel, B. Schepens, M. Slezak, V. Timmerman, C. Theunis, R. van Brempt, Y. Visser, C.J. Guerin, Developing 3D SEM in a broad biological context. J. Microsc. 259, 80–96 (2015). doi:10.1111/jmi.12211

    Article  Google Scholar 

  17. L. Hughes, C. Hawes, S. Monteith, S. Vaughan, Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251, 395–401 (2014). doi:10.1007/s00709-013-0580-1

    Article  Google Scholar 

  18. C.J. Peddie, L.M. Collinson, Exploring the third dimension: Volume electron microscopy comes of age. Micron 61, 9 (2014). doi:10.1016/j.micron.2014.01.009

    Article  Google Scholar 

  19. A. Zankel, J. Wagner, P. Poelt, Serial sectioning methods for 3D investigations in materials science. Micron 62, 66–78 (2014). doi:10.1016/j.micron.2014.03.002

    Article  Google Scholar 

  20. T. Hashimoto, G.E. Thompson, X. Zhou, P.J. Withers, 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy. Ultramicroscopy 163, 6–18 (2016). doi:10.1016/j.ultramic.2016.01.005

    Article  Google Scholar 

  21. C. Has, C. Sitaru, Molecular dermatology comes of age. Mol. Dermatolo. 961, 1–408 (2013). doi:10.1007/978-1-62703-227-8

    Google Scholar 

  22. V.E. Krohn, Liquid Metal Droplets for Heavy Particle Propulsion. Prog. Astronaut. Rocketry 5, 73–80 (1961). doi:10.2514/5.9781600864797.0073.0080

    Google Scholar 

  23. M.W. Phaneuf, Applications of focused ion beam microscopy to materials science specimens. Micron 30, 277–288 (1999). doi:10.1016/s0968-4328(99)00012-8

    Article  Google Scholar 

  24. K. Yonehara, N. Baba, K. Kanaya, Application of ion-beam etching techniques to the fine structure of biological specimens as examined with a field emission SEM at low voltage. J. Electron. Micrsc. Tech. 12, 71–77 (1989)

    Article  Google Scholar 

  25. M. Cantoni, L. Holzer, Advances in 3D focused ion beam tomography. MRS Bulletin 39, 354–360 (2014) doi:10.1557/mrs.2014.54

  26. V.G.M. Sivel, J. Van den Brand, W.R. Wang, H. Mohdadi, F.D. Tichelaar, P.F.A. Alkemade, H.W. Zandbergen, Application of the dual-beam FIB/SEM to metals research. J. Microsc. 214, 237–245 (2004). doi:10.1111/j.0022-2720.2004.01329.x

    Article  MathSciNet  Google Scholar 

  27. B. Titze, Techniques to prevent sample surface charging and reduce beam damage effects for SBEM imaging. Dissertation. Heidelberg University. 1–112 (2013)

    Google Scholar 

  28. S. Serrano-Zabaleta, A. Larrea, H. Stegmann, C. Waltenberg, Electron backscatter diffraction analysis of non-conductive samples using in-situ charge compensation. Microsc. Anal 9, 23–26 (2013)

    Google Scholar 

  29. D. Drobne, M. Milani, A. Zrimec, V. Leser, M. Berden Zrimec, Electron and ion imaging of gland cells using the FIB/SEM system. J. Microsc. 219, 29–35 (2005). doi:10.1111/j.1365-2818.2005.01490.x

    Article  MathSciNet  Google Scholar 

  30. K. Roberston, R. Gauvin, J. Finch, Application of charge contrast imaging in mineral characterization. Miner. Eng. 18, 343–352 (2005)

    Article  Google Scholar 

  31. A.A. Wanner, C. Genoud, T. Masudi, L. Siksou, R.W. Friedrich, Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat. Neurosci. 19, 816–825 (2016). doi:10.1038/nn.4290

    Article  Google Scholar 

  32. G. Knott, S. Rosset, M. Cantoni, Focussed ion beam milling and scanning electron microscopy of brain tissue. JoVE 53, 1–4 (2011). doi:10.3791/2588

    Google Scholar 

  33. K.M. Boergens, W. Denk, Controlling FIB-SBEM slice thickness by monitoring the transmitted ion beam. J. Microsc. 252, 258–262 (2013). doi:10.1111/jmi.12086

    Article  Google Scholar 

  34. K. Narayan, C.M. Danielson, K. Lagarec, B.C. Lowekamp, P. Coffman, A. Laquerre, M.W. Phaneuf, T.J. Hope, S. Subramaniam, Multi-resolution correlative focused ion beam scanning electron microscopy: Applications to cell biology. J. Struct. Biol. 185, 278–284 (2014). doi:10.1016/j.jsb.2013.11.008

    Article  Google Scholar 

  35. J.L. Schroeder, M. Bakalar, T.J. Pohida, R.S. Balaban, Rapid overlapping-volume acquisition and reconstruction (ROVAR): automated 3D tiling for high-resolution, large field-of-view optical microscopy. J. Microsc. 243, 103–110 (2011). doi:10.1111/j.1365-2818.2011.03490.x

    Article  Google Scholar 

  36. N. Ohno, M. Katoh, Y. Saitoh, S. Saitoh, S. Ohno, Three‐dimensional volume imaging with electron microscopy toward connectome. Microscopy 64, 17–26 (2015). doi:10.1093/jmicro/dfu112

  37. M.A. Karreman, L. Mercier, N.L. Schieber, G. Solecki, G. Allio, F. Winkler, B. Ruthensteiner, J.G. Goetz, Y. Schwab, Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016). doi:10.1242/jcs.181842

    Article  Google Scholar 

  38. A.P. Merkle, L. Lechner, S. Andy, J. Gelb, M. Kienle, M.W. Phaneuf, D. Unrau, S.S. singh, N. Chawla, Automated correlative tomography using XRM and FIB-SEM to span length scales and modalities in 3D materials. Microsc. Anal. 28, 1–4 (2014)

    Google Scholar 

  39. E.A. Bushong, D.D. Johnson, K.-Y. Kim, M. Terada, M. Hatori, S.T. Peltier, S. Panda, A. Merkle, M.H. Ellisman, X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens. Microsc. Microanal. 21(1), 231–238 (2015). doi:10.1017/S1431927614013579

    Article  ADS  Google Scholar 

  40. K.L. McDonald, Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 251, 429–448 (2013). doi:10.1007/s00709-013-0575-y

    Article  Google Scholar 

  41. T.J. Deerinck, E.A. Bushong, A. Thor, M.H. Ellisman, SBEM Protocol v7_01_10. In: httpswww.ncmir.ucsd.edusbem-protocol. https://www.ncmir.ucsd.edu/sbem-protocol/. Accessed 18 Feb 2017

  42. T.J. Deerinck, E.A. Bushong, V. Lev-Ram, X. Shu, R.Y. Tsien, M.H. Ellisman, Enhancing Serial Block-Face Scanning Electron Microscopy to Enable High Resolution 3-D Nanohistology of Cells and Tissues. Microsc. Microanal. 16, 1138–1139 (2010). doi:10.1017/S1431927610055170

    Article  ADS  Google Scholar 

  43. J.C. Tapia, N. Kasthuri, K.J. Hayworth, R. Schalek, J.W. Lichtman, S.J. Smith, J. Buchanan, High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat. Protoc. 7, 193–206 (2012). doi:10.1038/nprot.2011.439

    Article  Google Scholar 

  44. R.T. Giberson, R.L. Austin, J. Charlesworth, G. Adamson, G.A. Herrera, Microwave and digital imaging technology reduce turnaround times for diagnostic electron microscopy. Ultrastruct. Pathol. 27, 187–196 (2003). doi:10.1080/01913120309937

    Article  Google Scholar 

  45. N.L. Schieber, S.J. Nixon, R.I. Webb, V.M.J. Oorschot, R.G. Parton, Modern approaches for ultrastructural analysis of the zebrafish embryo. Methods Cell Biol. 96, 425–442 (2010). doi:10.1016/S0091-679X(10)96018-4

    Article  Google Scholar 

  46. A.A. Wanner, M.A. Kirschmann, C. Genoud, Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J. Microsc. 259, 137–142 (2015). doi:10.1111/jmi.12244

    Article  Google Scholar 

  47. H.B. Nguyen, T.Q. Thai, S. Saitoh, B. Wu, Y. Saitoh, S. Shimo, H. Fujitani, H. Otobe, N. Ohno, Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging. Sci. Rep. 6, 1–10 (2016). doi:10.1038/srep23721

    Article  Google Scholar 

  48. D. Studer, H. Gnaegi, Minimal compression of ultrathin sections with use of an oscillating diamond knife. J. Microsc. 197, 94–100 (2000)

    Article  Google Scholar 

  49. W.C. De Bruijn, Glycogen, its chemistry and morphologic appearance in the electron microscope: I. A modified OsO4 fixative which selectively contrasts glycogen. J. Ultrastruct. Res. 42(1–2), 1–22 (1973)

    Google Scholar 

  50. A.M. Seligman, H.L. Wasserkrug, J.S. Hanker, A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30(2), 1–9 (1966)

    Article  Google Scholar 

  51. J. Walton, Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. 27, 1337–1342 (1979). doi:10.1177/27.10.512319

    Article  Google Scholar 

  52. Y. Hua, P. Laserstein, M. Helmstaedter, Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 1–7 (2015). doi:10.1038/ncomms8923

    Google Scholar 

  53. S. Mikula, J. Binding, W. Denk, Staining and embedding the whole mouse brain for electron microscopy. Nat. Meth. 9, 1198–1201 (2012). doi:10.1038/nmeth.2213

    Article  Google Scholar 

  54. R. Webb, R. Webb, Quick freeze substitution processing of biological samples for serial block-face scanning electron microscopy. Microsc. Microanal. 21, 1115–1116 (2015). doi:10.1017/S1431927615006364

    Article  ADS  Google Scholar 

  55. K.L. McDonald, R.I. Webb, Freeze substitution in 3 hours or less. J. Microsc. 243, 227–233 (2011). doi:10.1111/j.1365-2818.2011.03526.x

    Article  Google Scholar 

  56. H. Kushida, Block staining with lead acetate. J. Electron Microsc. 15, 90–92 (1966)

    Google Scholar 

  57. D. Scheuring, C. Löfke, F. Krüger, M. Kittelmann, A. Eisa, L. Hughes, R.S. Smith, C. Hawes, K. Schumacher, J. Kleine-Vehn, Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc. Natl. Acad. Sci. U.S.A. 113, 452–457 (2016). doi:10.1073/pnas.1517445113

    Article  ADS  Google Scholar 

  58. S. Mikula, W. Denk, High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Meth 12, 541–546 (2015). doi:10.1038/nmeth.3361

    Article  Google Scholar 

  59. K.M. Furuta, S.R. Yadav, S. Lehesranta, I. Belevich, S. Miyashima, J. Heo, A. Vatén, O. Lindgren, B. de Rybel, G. van Isterdael, P. Somervuo, R. Lichtenberger, R. Rocha, S. Thitamadee, S. Tähtiharju, P. Auvinen, T. Beeckman, E. Jokitalo, Y. Helariutta, Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345, 933–937 (2014). doi:10.1126/science.1255097

    Article  ADS  Google Scholar 

  60. T. Starborg, N.S. Kalson, Y. Lu, A. Mironov, T.F. Cootes, D.F. Holmes, K.E. Kadler, Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat. Protoc. 8, 1433–1448 (2013). doi:10.1038/nprot.2013.086

    Article  Google Scholar 

  61. T. Anttonen, I. Belevich, A. Kirjavainen, M. Laos, C. Brakebusch, E. Jokitalo, U. Pirvola, How to bury the dead: elimination of apoptotic hair cells from the hearing organ of the mouse. JARO 15, 975–992 (2014). doi:10.1007/s10162-014-0480-x

    Article  Google Scholar 

  62. M. Helmstaedter, Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Meth 10, 501–507 (2013). doi:10.1038/nmeth.2476

    Article  Google Scholar 

  63. K.L. Briggman, M. Helmstaedter, W. Denk, Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011). doi:10.1038/nature09818

    Article  ADS  Google Scholar 

  64. J.A.W. Heymann, D. Shi, S. Kim, D. Bliss, J.L.S. Milne, S. Subramaniam, 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy. J. Struct. Biol. 166, 1–7 (2009). doi:10.1016/j.jsb.2008.11.005

    Article  Google Scholar 

  65. C. Kizilyaprak, J. Daraspe, B.M. Humbel, Focused ion beam scanning electron microscopy in biology. J. Microsc. 254, 109–114 (2014). doi:10.1111/jmi.12127

    Article  Google Scholar 

  66. C. Villinger, H. Gregorius, C. Kranz, K. Höhn, C. Münzberg, G. von Wichert, B. Mizaikoff, G. Wanner, P. Walther, FIB/SEM tomography with TEM-like resolution for 3D imaging of high-pressure frozen cells. Histochem. Cell Biol. 138, 549–556 (2012). doi:10.1007/s00418-012-1020-6

    Article  Google Scholar 

  67. D.A.M. de Winter, C.T.W.M. Schneijdenberg, M.N. Lebbink, B. Lich, A.J. Verkleij, M.R. Drury, B.M. Humbel, Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J. Microsc. 233, 372–383 (2009). doi:10.1111/j.1365-2818.2009.03139.x

    Article  MathSciNet  Google Scholar 

  68. A. Rigort, F.J.B. Bäuerlein, E. Villa, M. Eibauer, T. Laugks, W. Baumeister, J.M. Plitzko, Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. U.S.A. 109, 4449–4454 (2012). doi:10.1073/pnas.1201333109

    Article  ADS  Google Scholar 

  69. L. Chatel-Chaix, M. Cortese, I. Romero-Brey, S. Bender, C.J. Neufeldt, W. Fischl, P. Scaturro, N. Schieber, Y. Schwab, B. Fischer, A. Ruggieri, Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20(3), 1–16 (2016). doi:10.1016/j.chom.2016.07.008

    Article  Google Scholar 

  70. G.E. Murphy, K. Narayan, B.C. Lowekamp, L.M. Hartnell, J.A.W. Heymann, J. Fu, S. Subramaniam, Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J. Struct. Biol. 176, 268–278 (2011). doi:10.1016/j.jsb.2011.08.013

    Article  Google Scholar 

  71. J. Harapin, M. Börmel, K.T. Sapra, D. Brunner, A. Kaech, O. Medalia, Structural analysis of multicellular organisms with cryo-electron tomography. Nat. Publishing Group 12, 634–636 (2015). doi:10.1038/nmeth.3401

    Google Scholar 

  72. L.H.P. Hekking, M.N. Lebbink, D.A.M. de Winter, C.T.W.M. Schneijdenberg, C.M. Brand, B.M. Humbel, A.J. Verkleij, J.A. Post, Focused ion beam-scanning electron microscope: exploring large volumes of atherosclerotic tissue. J. Microsc. 235, 336–347 (2009). doi:10.1111/j.1365-2818.2009.03274.x

    Article  MathSciNet  Google Scholar 

  73. S. Hirashima, K. Ohta, T. Kanazawa, S. Okayama, A. Togo, N. Uchimura, J. Kusukawa, K.-I. Nakamura, Three-dimensional ultrastructural analysis of cells in the periodontal ligament using focused ion beam/scanning electron microscope tomography. Sci Rep 6, 39435 (2016). doi:10.1038/srep39435

    Article  ADS  Google Scholar 

  74. F. Greve, S. Frerker, A.G. Bittermann, C. Burkhardt, A. Hierlemann, H. Hall, Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 28, 5246–5258 (2007)

    Article  Google Scholar 

  75. B. Maco, M. Cantoni, A. Holtmaat, A. Kreshuk, F.A. Hamprecht, G.W. Knott, Semiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendrites. Nat. Protoc. 9, 1354–1366 (2014). doi:10.1038/nprot.2014.101

    Article  Google Scholar 

  76. D. Drobne, 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM), Nanoimaging (Humana Press, Totowa, NJ, 2013), pp. 275–292

    Chapter  Google Scholar 

  77. A.J. Bushby, K.M.Y. Png, R.D. Young, C. Pinali, C. Knupp, A.J. Quantock, Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6, 845–858 (2011). doi:10.1038/nprot.2011.332

    Article  Google Scholar 

  78. L.A. Giannuzzi, F.A. Stevie, Introduction to Focused Ion Beams (Springer, Boston, 2005)

    Google Scholar 

  79. B. Maco, A. Holtmaat, M. Cantoni, A. Kreshuk, C.N. Straehle, F.A. Hamprecht, G.W. Knott, Correlative in Vivo 2 Photon and focused Ion Beam scanning electron microscopy of cortical Neurons. PLoS ONE 8, e57405 (2013). doi:10.1371/journal.pone.0057405.g003

    Article  ADS  Google Scholar 

  80. B. Maco, A. Holtmaat, M. Cantoni, A. Kreshuk, C.N. Straehle, F.A. Hamprecht, G.W. Knott, Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. Methods Cell Biol. 124, 339–361 (2013). doi:10.1016/B978-0-12-801075-4.00016-1

    Article  Google Scholar 

  81. J.A.W. Heymann, M. Hayles, I. Gestmann, L.A. Giannuzzi, B. Lich, S. Subramaniam, Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155, 63–73 (2006). doi:10.1016/j.jsb.2006.03.006

    Article  Google Scholar 

  82. E. Brama, C.J. Peddie, G. Wilkes, Y. Gu, L.M. Collinson, M.L. Jones, ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy. Wellcome Open Res. 1, 19–26 (2016). doi:10.12688/wellcomeopenres.10299.1

    Article  Google Scholar 

  83. A. Schertel, N. Snaidero, H.-M. Han, T. Ruhwedel, M. Laue, M. Grabenbauer, W. Möbius, Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 184, 355–360 (2013). doi:10.1016/j.jsb.2013.09.024

    Article  Google Scholar 

  84. J. Arnold, J. Mahamid, V. Lucic, A. de Marco, J.J. Fernandez, T. Laugks, T. Mayer, A.A. Hyman, W. Baumeister, J.M. Plitzko, Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophysj 110(4), 1–10 (2016). doi:10.1016/j.bpj.2015.10.053

    Article  Google Scholar 

  85. J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev, L.K. Cuellar, F. Förster, A.A. Hyman, J.M. Plitzko, W. Baumeister, Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016). doi:10.1126/science.aad8857

    Article  ADS  Google Scholar 

  86. S. Borrett, L. Hughes, Reporting methods for processing and analysis of data from serial block face scanning electron microscopy. J. Microsc. 263, 3–9 (2016). doi:10.1111/jmi.12377

    Article  Google Scholar 

  87. A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair, P. Tomancak, V. Hartenstein, R.J. Douglas, TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012). doi:10.1371/journal.pone.0038011

    Article  ADS  Google Scholar 

  88. T. Pietzsch, S. Saalfeld, S. Preibisch, P. Tomancak, BigDataViewer: visualization and processing for large image data sets. Nat. Publishing Group 12, 481–483 (2015). doi:10.1038/nmeth.3392

    Google Scholar 

  89. P. Thévenaz, U.E. Ruttimann, M. Unser, A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998). doi:10.1109/83.650848

    Article  ADS  Google Scholar 

  90. A. Kreshuk, C.N. Straehle, C. Sommer, U. Koethe, M. Cantoni, G. Knott, F.A. Hamprecht, Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6, e24899 (2011). doi:10.1371/journal.pone.0024899

    Article  ADS  Google Scholar 

  91. A. Kreshuk, R. Walecki, U. Koethe, M. Gierthmuehlen, D. Plachta, C. Genoud, K. Haastert-talini, F.A. Hamprecht, Automated tracing of myelinated axons and detection of the nodes of Ranvier in serial images of peripheral nerves. J. Microsc. 259, 143–154 (2015). doi:10.1111/jmi.12266

    Article  Google Scholar 

  92. I. Belevich, M. Joensuu, D. Kumar, H. Vihinen, E. Jokitalo, Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 14, e1002340 (2016). doi:10.1371/journal.pbio.1002340

    Article  Google Scholar 

  93. A.L. Keller, D. Zeidler, T. Kemen, High-throughput data acquisition with a multi-beam SEM. Scan. Microscopies 9236 (2014)

    Google Scholar 

  94. T. Kemen, M. Malloy, B. Thiel, S. Mikula, W. Denk, G. Dellemann, D. Zeidler, Further advancing the throughput of a multi-beam SEM. Metrology, Inspection, and Process Control for Microlithography XXIX. (2015). doi:10.1117/12.2188560

    Google Scholar 

  95. P. Kruit, Y. Ren, Multi-Beam Scanning Electron Microscope Design. Microsc. Microanal. 22, 574–575 (2016). doi:10.1017/S143192761600372X

    Article  ADS  Google Scholar 

  96. A.L. Eberle, S. Mikula, R. Schlek, J. Lichtman, M.L. Knothe Tate, D. Zeidler, High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Microsc. 259, 114–120 (2015). doi:10.1111/jmi.12224

    Article  Google Scholar 

  97. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92–101 (2007). doi:10.1002/sca.20000

    Article  Google Scholar 

  98. L. Hughes, K. Towers, T. Starborg, K. Gull, S. Vaughan, A cell-body groove housing the new flagellum tip suggests an adaption of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J. Cell Sci. 126, 5748–5757 (2013). doi:10.1242/jcs.139139

Download references

Acknowledgements

Thanks to the staff from both the EMBL Electron Microscopy Core Facility and the University of Queensland Centre for Microscopy and Microanalysis. The constant support from Yannick Schwab cannot be surpassed. We are also thankful to Anna Steyer and Rachel Mellwig for their helpful discussions and suggestions to the manuscript. A special mention to Matthia Karreman and José Miguel Serra Lleti. Without the work of Robyn Chapman we wouldn’t have a SBEM system and it’s her untiring efforts that have led to its development in our facilities. I thank her for all her determination to make this technique a success. Rob Parton has always been a source of encouragement for this work and has been willing to supply samples for us to work with when developing new ideas. Rachel Templin has been a wonderful backup helping us to process large numbers of samples as we have sought to develop new processing for this technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, R.I., Schieber, N.L. (2018). Volume Scanning Electron Microscopy: Serial Block-Face Scanning Electron Microscopy Focussed Ion Beam Scanning Electron Microscopy. In: Hanssen, E. (eds) Cellular Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68997-5_5

Download citation

Publish with us

Policies and ethics