Technology Assessment: Developing Geothermal Energy Resources for Supporting Electrical System in Oregon

  • Ahmed Shehab Alshareef
  • Tugrul U. Daim
  • Ibrahim Iskin
Part of the Innovation, Technology, and Knowledge Management book series (ITKM)


This chapter presents a review of multi criteria decision models used in the energy sector and demonstrates application through the case of geothermal energy. The case is taken from Oregon which is located in teh pacific northwest region of the US. Experts are used to determine the criteria what is important for this application and the region.


  1. 1.
    Beck, F., & Martinot, E. (2004). Renewable energy policies and barriers. Encyclopedia of Energy, 5(7), 365–383.CrossRefGoogle Scholar
  2. 2.
    Zhe, W., Yiru, W., Chuan, H., Jianhui, Y., & Hao, Z. (2009). Development status of China's renewable energy power generation. InSustainable Power Generation and Supply, 2009. SUPERGEN'09. International Conference (pp. 1–5).Google Scholar
  3. 3.
    Wiser, R. H., & Pickle, S. J. (1998). Financing investments in renewable energy : the impacts of policy design. Renewable and Sustainable Energy Reviews, 2(4), 361–386.CrossRefGoogle Scholar
  4. 4.
    DiPippo, R. (1991). Geothermal energy electricity generation and environmental impact. Energy Policy, 19(8), 798–807.CrossRefGoogle Scholar
  5. 5.
    Sawyer, S. W. (1982). Leaders in change: Solar energy owners and the implications for future adoption rates. Technological Forecasting and Social Change, 21(3), 201–211.CrossRefGoogle Scholar
  6. 6., Geothermal | Department of Energy. (2015). [Online]. Available: Accessed 25 Jun 2015.
  7. 7.
    Barbier, E. (2002). Geothermal energy technology and current status: an overview. Renewable and Sustainable Energy Reviews, 6(1), 3–65.CrossRefGoogle Scholar
  8. 8., Geothermal Energy Geothermal Energy. (2015). [Online]. Available: Accessed 25 Jun 2015.
  9. 9.
    Union of Concerned Scientists, 'How Geothermal Energy Works. (2015). [Online]. Available: Accessed 25 Jun 2015.
  10. 10., Geothermal Energy, 2015. [Online]. Available: Accessed 25 Jun 2015.
  11. 11.
    Bertani, R. (2005). World geothermal power generation in the period 2001–2005. Geothermics, 34(6), 651–690.CrossRefGoogle Scholar
  12. 12.
    Bertani, R. (2012). Geothermal power generation in the world 2005–2010 update report. Geothermics, 41, 1–29.CrossRefGoogle Scholar
  13. 13.
    2013 Annual US geothermal power production and development report, Geothermal Energy Association, Washington, D.C, 2013.Google Scholar
  14. 14.
    Lund, J. W. (January 2003). Direct-use of geothermal energy in the USA. Applied Energy, 74(1), 33–42.CrossRefGoogle Scholar
  15. 15.
    Lund, J. W. (1997). Geothermal research at the Geo-Heat Center Oregon Institute of Technology. InEnergy Conversion Engineering Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety (Vol. 3, pp. 1820–1825).Google Scholar
  16. 16.
    Lund, J. W., & Freeston, D. H. (2001). World-wide direct uses of geothermal energy 2000. Geothermics, 30(1), 29–68.CrossRefGoogle Scholar
  17. 17. (2015). [Online]. Available: Accessed 25 Jun 2015.
  18. 18.
    U.S.Department of Energy, EERE Investments in Oregon, 2013.Google Scholar
  19. 19.
    Petty, S., Nordin, Y., Glassley, W., Cladouhos, T. T., & Swyer, M. (2013). Improving geothermal project economics with multi-zone stimulation: results from the Newberry Volcano EGS demonstration. InProceedings of the 38th Workshop on Geothermal Reservoir Engineering (pp. 11–13). Stanford.Google Scholar
  20. 20.
    Hull, D. A., Bowen, R. G., Blackwell, D. D., & Peterson, N. V. (1977). Preliminary Heat-Flow Map and Evaluation of Oregon's Geothermal Energy Potential. The Ore Bin, 39(7), 109–123.Google Scholar
  21. 21.
    Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—a review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.CrossRefGoogle Scholar
  22. 22.
    Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.CrossRefGoogle Scholar
  23. 23.
    Løken, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584–1595.CrossRefGoogle Scholar
  24. 24.
    Mendoza, G. A., & Martins, H. (2006). Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. Forest Ecology and Management, 230(1), 1–22.CrossRefGoogle Scholar
  25. 25.
    Energy Challenges for Oregon and the Nation, National Ocean Industrial Association.Google Scholar
  26. 26.
    Adams, S., & Anderson, S. (2009). ‘'Portland Plan’'. InCity of Portland Bureau of Planning and Sustainability, Portland.Google Scholar
  27. 27.
    State of Oregon Biennial Energy Plan 2015–2017, Oregon Department of Energy, Salem, Oregon, 2015.Google Scholar
  28. 28.
    Samouilidis, J. E., & Mitropoulos, C. S. (1982). An aggregate model for energy costs: national product interdependence. Energy Economics, 4(3), 199–206.CrossRefGoogle Scholar
  29. 29.
    Bopp, A., & Lady, G. M. (1982). On measuring the effects of higher energy prices. Energy Economics, 4(4), 218–224.CrossRefGoogle Scholar
  30. 30.
    Meier, P., & Mubayi, V. (1983). Modelling energy-economic interactions in developing countries: A linear programming approach. European Journal of Operational Research, 13(1), 41–59.CrossRefGoogle Scholar
  31. 31.
    Beccali, M., Cellura, M., & Mistretta, M. (2003). Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renewable Energy, 28(13), 2063–2087.CrossRefGoogle Scholar
  32. 32.
    San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renewable Energy, 36(2), 498–502.CrossRefGoogle Scholar
  33. 33.
    Kaya, T., & Kahraman, C. (2011). Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications, 38(6), 6577–6585.CrossRefGoogle Scholar
  34. 34.
    Beccali, M., Cellura, M., & Ardente, D. (1998). Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a fuzzy-sets methodology. Energy Conversion and Management, 39(16), 1869–1881.CrossRefGoogle Scholar
  35. 35.
    Zhou, P., Ang, B. W., & Poh, K. L. (2006). Decision analysis in energy and environmental modeling: An update. Energy, 31(14), 2604–2622.CrossRefGoogle Scholar
  36. 36.
    Lind, R. C. (1995). Intergenerational equity, discounting, and the role of cost-benefit analysis in evaluating global climate policy. Energy Policy, 23(4), 379–389.CrossRefGoogle Scholar
  37. 37.
    Maddison, D. (1995). A cost-benefit analysis of slowing climate change. Energy Policy, 23(4), 337–346.CrossRefGoogle Scholar
  38. 38.
    Diakoulaki, D., & Karangelis, F. (2007). Multi-criteria decision analysis and cost–benefit analysis of alternative scenarios for the power generation sector in Greece. Renewable and Sustainable Energy Reviews, 11(4), 716–727.CrossRefGoogle Scholar
  39. 39.
    Snyder, B., & Kaiser, M. J. (2009). Ecological and economic cost-benefit analysis of offshore wind energy. Renewable Energy, 34(6), 1567–1578.CrossRefGoogle Scholar
  40. 40.
    Jaffe, A. B., Newell, R. G., & Stavins, R. N. (2005). A tale of two market failures: Technology and environmental policy. Ecological Economics, 54(2), 164–174.CrossRefGoogle Scholar
  41. 41.
    Clinch, J. P., & Healy, J. D. (2001). Cost-benefit analysis of domestic energy efficiency. Energy Policy, 29(2), 113–124.CrossRefGoogle Scholar
  42. 42.
    Bollen, J., van der Zwaan, B., Brink, C., & Eerens, H. (2009). Local air pollution and global climate change: A combined cost-benefit analysis. Resource and Energy Economics, 31(3), 161–181.CrossRefGoogle Scholar
  43. 43.
    Molinos-Senante, M., Hernández-Sancho, F., & Sala-Garrido, R. (2011). Cost–benefit analysis of water-reuse projects for environmental purposes: a case study for Spanish wastewater treatment plants. Journal of Environmental Management, 92(12), 3091–3097.CrossRefGoogle Scholar
  44. 44.
    Mehta, S., & Shahpar, C. (2004). The health benefits of interventions to reduce indoor air pollution from solid fuel use: a cost-effectiveness analysis. Energy for Sustainable Development, 8(3), 53–59.CrossRefGoogle Scholar
  45. 45.
    Kovacevic, V., & Wesseler, J. (2010). Cost-effectiveness analysis of algae energy production in the EU. Energy Policy, 38(10), 5749–5757.CrossRefGoogle Scholar
  46. 46.
    Bassi, A. M., & Yudken, J. S. (2011). Climate policy and energy-intensive manufacturing: A comprehensive analysis of the effectiveness of cost mitigation provisions in the American Energy and Security Act of 2009. Energy Policy, 39(9), 4920–4931.CrossRefGoogle Scholar
  47. 47.
    Jackson, T. (1995). Joint implementation and cost-effectiveness under the Framework Convention on Climate Change. Energy Policy, 23(2), 117–138.CrossRefGoogle Scholar
  48. 48.
    Berndes, G., & Hansson, J. (2007). Bioenergy expansion in the EU: cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy, 35(12), 5965–5979.CrossRefGoogle Scholar
  49. 49.
    Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126(1), 67–80.CrossRefGoogle Scholar
  50. 50.
    Nelson, D. B., Nehrir, M. H., & Wang, C. (2006). Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy, 31(10), 1641–1656.CrossRefGoogle Scholar
  51. 51.
    Carley, S. (2009). State renewable energy electricity policies: An empirical evaluation of effectiveness. Energy Policy, 37(8), 3071–3081.CrossRefGoogle Scholar
  52. 52.
    Kneifel, J. (2010). Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy and Buildings, 42(3), 333–340.CrossRefGoogle Scholar
  53. 53.
    Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., et al. (2011). Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26(12), 1489–1501.CrossRefGoogle Scholar
  54. 54.
    Stevens, B., & Rose, A. (2002). A dynamic analysis of the marketable permits approach to global warming policy: A comparison of spatial and temporal flexibility. Journal of Environmental Economics and Management, 44(1), 45–69.CrossRefGoogle Scholar
  55. 55.
    Morrow, W. R., Gallagher, K. S., Collantes, G., & Lee, H. (2010). Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector. Energy Policy, 38(3), 1305–1320.CrossRefGoogle Scholar
  56. 56.
    Vermont, B., & De Cara, S. (2010). How costly is mitigation of non-CO 2 greenhouse gas emissions from agriculture?: A meta-analysis. Ecological Economics, 69(7), 1373–1386.CrossRefGoogle Scholar
  57. 57.
    Agrawal, B., & Tiwari, G. N. (2010). Life cycle cost assessment of building integrated photovoltaic thermal (BIPVT) systems. Energy and Buildings, 42(9), 1472–1481.CrossRefGoogle Scholar
  58. 58.
    Chel, A., Tiwari, G. N., & Chandra, A. (2009). Simplified method of sizing and life cycle cost assessment of building integrated photovoltaic system. Energy and Buildings, 41(11), 1172.CrossRefGoogle Scholar
  59. 59.
    Marszal, A. J., & Heiselberg, P. (2011). Life cycle cost analysis of a multi-storey residential net zero energy building in Denmark. Energy, 36(9), 5600–5609.CrossRefGoogle Scholar
  60. 60.
    Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81–92.CrossRefGoogle Scholar
  61. 61.
    Erlandsson, M., & Borg, M. (2003). Generic LCA-methodology applicable for buildings, constructions and operation services—today practice and development needs. Building and Environment, 38(7), 919–938.CrossRefGoogle Scholar
  62. 62.
    Hu, Z., Fang, F., Ben, D., Pu, G., & Wang, C. (2004). Net energy, CO 2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China. Applied Energy, 78(3), 247–256.CrossRefGoogle Scholar
  63. 63.
    Papong, S., & Malakul, P. (2010). Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand. Bioresource Technology, 101(1), S112–S118.CrossRefGoogle Scholar
  64. 64.
    Gluch, P., & Baumann, H. (2004). The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39(5), 571–580.CrossRefGoogle Scholar
  65. 65.
    Utne, I. B. (2009). Improving the environmental performance of the fishing fleet by use of Quality Function Deployment (QFD). Journal of Cleaner Production, 17(8), 724–731.CrossRefGoogle Scholar
  66. 66.
    Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498–508.CrossRefGoogle Scholar
  67. 67.
    Luo, L., Van Der Voet, E., & Huppes, G. (2009). Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable and Sustainable Energy Reviews, 13(6), 1613–1619.CrossRefGoogle Scholar
  68. 68.
    Utne, I. B. (2009). Life cycle cost (LCC) as a tool for improving sustainability in the Norwegian fishing fleet. Journal of Cleaner Production, 17(3), 335–344.CrossRefGoogle Scholar
  69. 69.
    Nguyen, T. L. T., Gheewala, S. H., & Garivait, S. (2007). Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand. Energy Policy, 35(9), 4585–4596.CrossRefGoogle Scholar
  70. 70.
    Reijnders, L., & Huijbregts, M. A. (2007). Life cycle greenhouse gas emissions, fossil fuel demand and solar energy conversion efficiency in European bioethanol production for automotive purposes. Journal of Cleaner Production, 15(18), 1806–1812.CrossRefGoogle Scholar
  71. 71.
    Yan, X., & Crookes, R. J. (2009). Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China. Renewable and Sustainable Energy Reviews, 13(9), 2505–2514.CrossRefGoogle Scholar
  72. 72.
    Ugwu, O. O., Kumaraswamy, M. M., Kung, F., & Ng, S. T. (2005). Object-oriented framework for durability assessment and life cycle costing of highway bridges. Automation in Construction, 14(5), 611–632.CrossRefGoogle Scholar
  73. 73.
    González-García, S., Iribarren, D., Susmozas, A., Dufour, J., & Murphy, R. J. (2012). Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation. Applied Energy, 95, 111–122.CrossRefGoogle Scholar
  74. 74.
    Knapp, K., & Jester, T. (2001). Empirical investigation of the energy payback time for photovoltaic modules. Solar Energy, 71(3), 165–172.CrossRefGoogle Scholar
  75. 75.
    Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, 255–274.CrossRefGoogle Scholar
  76. 76.
    de Wild-Scholten, M. J. (2013). Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Materials and Solar Cells, 119, 296–305.CrossRefGoogle Scholar
  77. 77.
    Wilson, R., & Young, A. (1996). The embodied energy payback period of photovoltaic installations applied to buildings in the UK. Building and Environment, 31(4), 299–305.CrossRefGoogle Scholar
  78. 78.
    Goe, M., & Gaustad, G. (2014). Strengthening the case for recycling photovoltaics: An energy payback analysis. Applied Energy, 120, 41–48.CrossRefGoogle Scholar
  79. 79.
    Weißbach, D., Ruprecht, G., Huke, A., Czerski, K., Gottlieb, S., & Hussein, A. (2013). Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, 52, 210–221.CrossRefGoogle Scholar
  80. 80.
    Gagnon, L., Belanger, C., & Uchiyama, Y. (2002). Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy, 30(14), 1267–1278.CrossRefGoogle Scholar
  81. 81.
    White, S. W., & Kulcinski, G. L. (2000). Birth to death analysis of the energy payback ratio and CO 2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants. Fusion Engineering and Design, 48(3), 473–481.CrossRefGoogle Scholar
  82. 82.
    Schleisner, L. (2000). Life cycle assessment of a wind farm and related externalities. Renewable Energy, 20(3), 279–288.CrossRefGoogle Scholar
  83. 83.
    Lu, L., & Yang, H. X. (2010). Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong. Applied Energy, 87(12), 3625–3631.CrossRefGoogle Scholar
  84. 84.
    Ardente, F., Beccali, G., Cellura, M., & Brano, V. L. (2005). Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances. Renewable Energy, 30(2), 109–130.CrossRefGoogle Scholar
  85. 85.
    Hang, Y., Qu, M., & Zhao, F. (2012). Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy and Buildings, 45, 181–188.CrossRefGoogle Scholar
  86. 86.
    Wong, I. L., Eames, P. C., & Perera, R. S. (2007). A review of transparent insulation systems and the evaluation of payback period for building applications. Solar Energy, 81(9), 1058–1071.CrossRefGoogle Scholar
  87. 87.
    Chilton, J. C., Maidment, G. G., Marriott, D., Francis, A., & Tobias, G. (2000). Case study of a rainwater recovery system in a commercial building with a large roof. Urban water, 1(4), 345–354.CrossRefGoogle Scholar
  88. 88.
    Daouas, N., Hassen, Z., & Aissia, H. B. (2010). Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia. Applied Thermal Engineering, 30(4), 319.CrossRefGoogle Scholar
  89. 89.
    Hacker, J. N., De Saulles, T. P., Minson, A. J., & Holmes, M. J. (2008). Embodied and operational carbon dioxide emissions from housing: a case study on the effects of thermal mass and climate change. Energy and Buildings, 40(3), 375–384.CrossRefGoogle Scholar
  90. 90.
    Staffell, I., Ingram, A., & Kendall, K. (2012). Energy and carbon payback times for solid oxide fuel cell based domestic CHP. International Journal of Hydrogen Energy, 37(3), 2509–2523.CrossRefGoogle Scholar
  91. 91.
    Kim, Y. J., & Sanders, G. L. (2002). Strategic actions in information technology investment based on real option theory. Decision Support Systems, 33(1), 1–11.CrossRefGoogle Scholar
  92. 92.
    McLellan, B. C., Corder, G. D., Giurco, D., & Green, S. (2009). Incorporating sustainable development in the design of mineral processing operations–Review and analysis of current approaches. Journal of Cleaner Production, 17(16), 1414–1425.CrossRefGoogle Scholar
  93. 93.
    Kjaerland, F. (2007). A real option analysis of investments in hydropower—The case of Norway. Energy Policy, 35(11), 5901–5908.CrossRefGoogle Scholar
  94. 94.
    Lee, S. C. (2011). Using real option analysis for highly uncertain technology investments: The case of wind energy technology. Renewable and Sustainable Energy Reviews, 15(9), 4443–4450.CrossRefGoogle Scholar
  95. 95.
    Yeo, K. T., & Qiu, F. (2003). The value of management flexibility—a real option approach to investment evaluation. International Journal of Project Management, 21(4), 243–250.CrossRefGoogle Scholar
  96. 96.
    Davis, G. A., & Owens, B. (2003). Optimizing the level of renewable electric R&D expenditures using real options analysis. Energy Policy, 31(15), 1589–1608.CrossRefGoogle Scholar
  97. 97.
    Kumbaroğlu, G., Madlener, R., & Demirel, M. (2008). A real options evaluation model for the diffusion prospects of new renewable power generation technologies. Energy Economics, 30(4), 1882–1908.CrossRefGoogle Scholar
  98. 98.
    Szolgayova, J., Fuss, S., & Obersteiner, M. (2008). Assessing the effects of CO 2 price caps on electricity investments—a real options analysis. Energy Policy, 36(10), 3974–3981.CrossRefGoogle Scholar
  99. 99.
    Jalil, A., & Mahmud, S. F. (2009). Environment Kuznets curve for CO 2 emissions: a cointegration analysis for China. Energy Policy, 37(12), 5167–5172.CrossRefGoogle Scholar
  100. 100.
    Miller, K. D., & Waller, H. G. (2003). Scenarios, real options and integrated risk management. Long Range Planning, 36(1), 93–107.CrossRefGoogle Scholar
  101. 101.
    Lander, D. M., & Pinches, G. E. (1998). Challenges to the practical implementation of modeling and valuing real options. The Quarterly Review of Economics and Finance, 38(3), 537–567.CrossRefGoogle Scholar
  102. 102.
    Kim, J., Hwang, M., Jeong, D. H., & Jung, H. (2012). Technology trends analysis and forecasting application based on decision tree and statistical feature analysis. Expert Systems with Applications, 39(16), 12618–12625.CrossRefGoogle Scholar
  103. 103.
    Hawkes, A. D., & Leach, M. A. (2007). Cost-effective operating strategy for residential micro-combined heat and power. Energy, 32(5), 711–723.CrossRefGoogle Scholar
  104. 104.
    Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9), 1761–1768.CrossRefGoogle Scholar
  105. 105.
    Weiner, D., Fisher, D., Moses, E. J., Katz, B., & Meron, G. (2001). Operation experience of a solar-and wind-powered desalination demonstration plant. Desalination, 137(1), 7–13.CrossRefGoogle Scholar
  106. 106.
    Lee, S. C., & Shih, L. H. (2010). Renewable energy policy evaluation using real option model—The case of Taiwan. Energy Economics, 32, S67–S78.CrossRefGoogle Scholar
  107. 107.
    Biswal, M., & Dash, P. K. (2013). Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier. Digital Signal Processing, 23(4), 1071–1083.CrossRefGoogle Scholar
  108. 108.
    Cramer, G. M., Ford, R. A., & Hall, R. L. (1976). Estimation of toxic hazard—a decision tree approach. Food and Cosmetics Toxicology, 16(3), 255–276.CrossRefGoogle Scholar
  109. 109.
    Duncan, R. (1980). What is the right organization structure? Decision tree analysis provides the answer. Organizational Dynamics, 7(3), 59–80.CrossRefGoogle Scholar
  110. 110.
    Yu, Z., Haghighat, F., Fung, B. C., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637–1646.CrossRefGoogle Scholar
  111. 111.
    Olaru, C., & Wehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy Sets and Systems, 138(2), 221–254.CrossRefGoogle Scholar
  112. 112.
    Varma, V. A., Reklaitis, G. V., Blau, G. E., & Pekny, J. F. (2007). Enterprise-wide modeling & optimization—An overview of emerging research challenges and opportunities. Computers & Chemical Engineering, 31(5), 692–711.CrossRefGoogle Scholar
  113. 113.
    Wallace, S. W., & Fleten, S. E. (2003). Stochastic programming models in energy. InHandbooks in operations research and management science (Vol. 10, pp. 637–677). Amsterdam: Elsevier.Google Scholar
  114. 114.
    Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55–71.CrossRefGoogle Scholar
  115. 115.
    Liu, B. T., Chien, K. H., & Wang, C. C. (2004). Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 29(8), 1207–1217.CrossRefGoogle Scholar
  116. 116.
    Reiche, D., & Bechberger, M. (2004). Policy differences in the promotion of renewable energies in the EU member states. Energy Policy, 32(7), 843–849.CrossRefGoogle Scholar
  117. 117.
    Walker, G., & Devine-Wright, P. (2008). Community renewable energy: What should it mean? Energy Policy, 36(2), 497–500.CrossRefGoogle Scholar
  118. 118.
    Yu, Z., Fung, B. C., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings, 43(6), 1409–1417.CrossRefGoogle Scholar
  119. 119.
    Richardson, B. C. (2005). Sustainable transport: analysis frameworks. Journal of Transport Geography, 13(1), 29–39.CrossRefGoogle Scholar
  120. 120.
    Lund, H., & Salgi, G. (2009). The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management, 50(5), 1172–1179.CrossRefGoogle Scholar
  121. 121.
    Lund, H. (2005). Large-scale integration of wind power into different energy systems. Energy, 30(13), 2402–2412.CrossRefGoogle Scholar
  122. 122.
    Keeney, R., & Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York: Willey.Google Scholar
  123. 123.
    Sanayei, A., Mousavi, S. F., Abdi, M. R., & Mohaghar, A. (2008). An integrated group decision-making process for supplier selection and order allocation using multi-attribute utility theory and linear programming. Journal of the Franklin Institute, 345(7), 731–747.CrossRefGoogle Scholar
  124. 124.
    Bose, U., Davey, A. M., & Olson, D. L. (1997). Multi-attribute utility methods in group decision making: past applications and potential for inclusion in GDSS. Omega, 25(6), 691–706.CrossRefGoogle Scholar
  125. 125.
    Keeney, R. L. (1977). The art of assessing multiattribute utility functions. Organizational Behavior and Human Performance, 19(2), 267–310.CrossRefGoogle Scholar
  126. 126.
    Ananda, J., & Herath, G. (2005). Evaluating public risk preferences in forest land-use choices using multi-attribute utility theory. Ecological Economics, 55(3), 408–419.CrossRefGoogle Scholar
  127. 127.
    Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research, 107(3), 507–529.CrossRefGoogle Scholar
  128. 128.
    Konidari, P., & Mavrakis, D. (2007). A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy, 35(12), 6235–6257.CrossRefGoogle Scholar
  129. 129.
    Holt, G. D. (1998). Which contractor selection methodology? International Journal of Project Management, 16(3), 153–164.CrossRefGoogle Scholar
  130. 130.
    Pawlak, Z., & Sowinski, R. (1994). Rough set approach to multi-attribute decision analysis. European Journal of Operational Research, 72(3), 443–459.CrossRefGoogle Scholar
  131. 131.
    Kainuma, Y., & Tawara, N. (2006). A multiple attribute utility theory approach to lean and green supply chain management. International Journal of Production Economics, 101(1), 99–108.CrossRefGoogle Scholar
  132. 132.
    Kowalski, K., Stagl, S., Madlener, R., & Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197(3), 1063–1074.CrossRefGoogle Scholar
  133. 133.
    Anandalingam, G., & Olsson, C. E. (1989). A multi-stage multi-attribute decision model for project selection. European Journal of Operational Research, 43(3), 271–283.CrossRefGoogle Scholar
  134. 134.
    Velasquez, M., & Hester, P. T. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56–66.Google Scholar
  135. 135.
    Elkarmi, F., & Mustafa, I. (1993). Increasing the utilization of solar energy technologies (SET) in Jordan: Analytic Hierarchy Process. Energy Policy, 21(9), 978–984.CrossRefGoogle Scholar
  136. 136.
    Forman, E. H., & Gass, S. I. (2001). The analytic hierarchy process-an exposition. Operations Research, 49(4), 469–486.CrossRefGoogle Scholar
  137. 137.
    Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGrawHill, New York.Google Scholar
  138. 138.
    Kocaoglu, D. F. (1983). A participative approach to program evaluation. IEEE Transactions on Engineering Management, EM-30, 112–118.CrossRefGoogle Scholar
  139. 139.
    Lee, S. K., Yoon, Y. J., & Kim, J. W. (2007). A study on making a long-term improvement in the national energy efficiency and GHG control plans by the AHP approach. Energy Policy, 35(5), 2862–2868.CrossRefGoogle Scholar
  140. 140.
    Ramanathan, R., & Ganesh, L. S. (1995). Energy alternatives for lighting in households: an evaluation using an integrated goal programming-AHP model. Energy, 20(1), 63–72.CrossRefGoogle Scholar
  141. 141.
    Lee, S. K., Mogi, G., & Kim, J. W. (2008). The competitiveness of Korea as a developer of hydrogen energy technology: the AHP approach. Energy Policy, 36(4), 1284–1291.CrossRefGoogle Scholar
  142. 142.
    Hämäläinen, R. P., & Seppäläinen, T. O. (1986). The analytic network process in energy policy planning. Socio-Economic Planning Sciences, 20(6), 399–405.CrossRefGoogle Scholar
  143. 143.
    Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517–2527.CrossRefGoogle Scholar
  144. 144.
    Heo, E., Kim, J., & Boo, K. J. (2010). Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renewable and Sustainable Energy Reviews, 14(8), 2214–2220.CrossRefGoogle Scholar
  145. 145.
    Poh, K. L., & Ang, B. W. (1999). Transportation fuels and policy for Singapore: an AHP planning approach. Computers & Industrial Engineering, 37(3), 507–525.CrossRefGoogle Scholar
  146. 146.
    Ramanathan, R. (2001). A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management, 63(1), 27–35.CrossRefGoogle Scholar
  147. 147.
    Ulutaş, B. H. (2005). Determination of the appropriate energy policy for Turkey. Energy, 30(7), 1146–1161.CrossRefGoogle Scholar
  148. 148.
    Köne, A. C., & Büke, T. (2007). An Analytical Network Process (ANP) evaluation of alternative fuels for electricity generation in Turkey. Energy Policy, 35(10), 5220–5228.CrossRefGoogle Scholar
  149. 149.
    Erdoğmuş, S., Aras, H., & Koç, E. (June 2006). Evaluation of alternative fuels for residential heating in Turkey using analytic network process (ANP) with group decision-making. Renewable and Sustainable Energy Reviews, 10(3), 269–279.CrossRefGoogle Scholar
  150. 150.
    İ.Yüksel, and M.Dagdeviren. (2007). Using the analytic network process (ANP) in a SWOT analysis–A case study for a textile firm. Information Sciences, 177(16), 3364–3382.CrossRefGoogle Scholar
  151. 151.
    Aragonés-Beltrán, P., Chaparro-González, F., Pastor-Ferrando, J. P., & Rodríguez-Pozo, F. (2010). An ANP-based approach for the selection of photovoltaic solar power plant investment projects. Renewable and Sustainable Energy Reviews, 14(1), 249–264.CrossRefGoogle Scholar
  152. 152.
    Xu, P., & Chan, E. H. (2013). ANP model for sustainable Building Energy Efficiency Retrofit (BEER) using Energy Performance Contracting (EPC) for hotel buildings in China. Habitat International, 37, 104–112.CrossRefGoogle Scholar
  153. 153.
    Hung, S. J. (2011). Activity-based divergent supply chain planning for competitive advantage in the risky global environment: A DEMATEL-ANP fuzzy goal programming approach. Expert Systems with Applications, 38(8), 9053–9062.CrossRefGoogle Scholar
  154. 154.
    Sarkis, J. (1998). Evaluating environmentally conscious business practices. European Journal of Operational Research, 107(1), 159–174.CrossRefGoogle Scholar
  155. 155.
    Theißen, S., & Spinler, S. (2014). Strategic analysis of manufacturer-supplier partnerships: An ANP model for collaborative CO 2 reduction management. European Journal of Operational Research, 233(2), 383–397.CrossRefGoogle Scholar
  156. 156.
    Shiue, Y. C., & Lin, C. Y. (2012). Applying analytic network process to evaluate the optimal recycling strategy in upstream of solar energy industry. Energy and Buildings, 54, 266–277.CrossRefGoogle Scholar
  157. 157.
    Mazurek, J., & Kiszová, Z. (2012). Modeling dependence and feedback in ANP with fuzzy cognitive maps. InProceedings of 30th International Conference Mathematical Methods in Economics (pp. 558–563).Google Scholar
  158. 158.
    Turcksin, L., Bernardini, A., & Macharis, C. (2011). A combined AHP-PROMETHEE approach for selecting the most appropriate policy scenario to stimulate a clean vehicle fleet. Procedia-Social and Behavioral Sciences, 20, 954–965.CrossRefGoogle Scholar
  159. 159.
    Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., & Kiosses, I. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37(5), 1587–1600.CrossRefGoogle Scholar
  160. 160.
    Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: structuring a multi-criteria group decision-making framework. Renewable Energy, 28(6), 961–973.CrossRefGoogle Scholar
  161. 161.
    Madlener, R., Kowalski, K., & Stagl, S. (2007). New ways for the integrated appraisal of national energy scenarios: the case of renewable energy use in Austria. Energy Policy, 35(12), 6060–6074.CrossRefGoogle Scholar
  162. 162.
    Goumas, M. G., Lygerou, V. A., & Papayannakis, L. E. (1999). Computational methods for planning and evaluating geothermal energy projects. Energy Policy, 27(3), 147–154.CrossRefGoogle Scholar
  163. 163.
    Cavallaro, F., & Ciraolo, L. (2005). A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 33(2), 235–244.CrossRefGoogle Scholar
  164. 164.
    Goumas, M., & Lygerou, V. (2000). An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. European Journal of Operational Research, 123(3), 606–613.CrossRefGoogle Scholar
  165. 165.
    Ren, H., Gao, W., Zhou, W., & Nakagami, K. I. (2009). Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan. Energy Policy, 37(12), 5484–5493.CrossRefGoogle Scholar
  166. 166.
    Cavallaro, F. (2009). Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy, 34(7), 1678–1685.CrossRefGoogle Scholar
  167. 167.
    Beynon, M. J., & Wells, P. (2008). The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis. Omega, 36(3), 384–394.CrossRefGoogle Scholar
  168. 168.
    Papadopoulos, A., & Karagiannidis, A. (2008). Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems. Omega, 36(5), 766–776.CrossRefGoogle Scholar
  169. 169.
    Cavallaro, F. (2010). A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method. Energy Policy, 38(1), 463–474.CrossRefGoogle Scholar
  170. 170.
    Georgopoulou, E., Lalas, D., & Papagiannakis, L. (1997). A multicriteria decision aid approach for energy planning problems: The case of renewable energy option. European Journal of Operational Research, 103(1), 38–54.CrossRefGoogle Scholar
  171. 171.
    Huang, J. P., Poh, K. L., & Ang, B. W. (1995). Decision analysis in energy and environmental modeling. Energy, 20(9), 843–855.CrossRefGoogle Scholar
  172. 172.
    Kahraman, C., & Kaya, İ. (2010). A fuzzy multicriteria methodology for selection among energy alternatives. Expert Systems with Applications, 37(9), 6270–6281.CrossRefGoogle Scholar
  173. 173.
    Neves, L. P., Martins, A. G., Antunes, C. H., & Dias, L. C. (2008). A multi-criteria decision approach to sorting actions for promoting energy efficiency. Energy Policy, 36(7), 2351–2363.CrossRefGoogle Scholar
  174. 174.
    Topcu, Y. I., & Ulengin, F. (2004). Energy for the future: An integrated decision aid for the case of Turkey. Energy, 29(1), 137–154.CrossRefGoogle Scholar
  175. 175.
    Shen, Y. C., Lin, G. T., Li, K. P., & Yuan, B. J. (2010). An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604–4616.CrossRefGoogle Scholar
  176. 176.
    Milani, A. S., Shanian, A., & El-Lahham, C. (2006). Using different ELECTRE methods in strategic planning in the presence of human behavioral resistance. Journal of Applied Mathematics and Decision Sciences, 2006, 1–19.CrossRefGoogle Scholar
  177. 177.
    Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673.CrossRefGoogle Scholar
  178. 178.
    Yerramalla, S., Davari, A., Feliachi, A., & Biswas, T. (2003). Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 124(1), 104–113.CrossRefGoogle Scholar
  179. 179.
    Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., Sprik, S., & Wipke, K. (2002). ADVISOR: a systems analysis tool for advanced vehicle modeling. Journal of Power Sources, 110(2), 255–266.CrossRefGoogle Scholar
  180. 180.
    Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.CrossRefGoogle Scholar
  181. 181.
    Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2), 215–233.CrossRefGoogle Scholar
  182. 182.
    Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835.CrossRefGoogle Scholar
  183. 183.
    Kellner, M. I., Madachy, R. J., & Raffo, D. M. (1999). Software process simulation modeling: why? what? how? Journal of Systems and Software, 46(2), 91–105.CrossRefGoogle Scholar
  184. 184.
    Perez, R., Ineichen, P., Seals, R., Michalsky, J., & Stewart, R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271–289.CrossRefGoogle Scholar
  185. 185.
    Fong, K. F., Hanby, V. I., & Chow, T. T. (2006). HVAC system optimization for energy management by evolutionary programming. Energy and Buildings, 38(3), 220–231.CrossRefGoogle Scholar
  186. 186.
    Cai, Y. P., Huang, G. H., Lin, Q. G., Nie, X. H., & Tan, Q. (2009). An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Systems with Applications, 36(2), 3470–3482.CrossRefGoogle Scholar
  187. 187.
    Yang, H., Zhou, W., Lu, L., & Fang, Z. (2008). Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Solar Energy, 82(4), 354–367.CrossRefGoogle Scholar
  188. 188.
    Li, C. H., Zhu, X. J., Cao, G. Y., Sui, S., & Hu, M. R. (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34(3), 815–826.CrossRefGoogle Scholar
  189. 189.
    Ulleberg, Ø. (2003). Modeling of advanced alkaline electrolyzers: a system simulation approach. International Journal of Hydrogen Energy, 28(1), 21–33.CrossRefGoogle Scholar
  190. 190.
    Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766.CrossRefGoogle Scholar
  191. 191.
    Ren, H., Gao, W., & Ruan, Y. (2009). Economic optimization and sensitivity analysis of photovoltaic system in residential buildings. Renewable Energy, 34(3), 883–889.CrossRefGoogle Scholar
  192. 192.
    Benonysson, A., Bøhm, B., & Ravn, H. F. (1995). Operational optimization in a district heating system. Energy Conversion and Management, 36(5), 297–314.CrossRefGoogle Scholar
  193. 193.
    Münster, M., & Meibom, P. (2011). Optimization of use of waste in the future energy syste. Energy, 36(3), 1612–1622.CrossRefGoogle Scholar
  194. 194.
    Cavallaro, F. (2010). Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy, 87(2), 496–503.CrossRefGoogle Scholar
  195. 195.
    Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069.CrossRefGoogle Scholar
  196. 196.
    Chamodrakas, I., & Martakos, D. (2012). A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Applied Soft Computing, 12(7), 1929–1938.CrossRefGoogle Scholar
  197. 197.
    Sadeghzadeh, K., & Salehi, M. B. (2011). Mathematical analysis of fuel cell strategic technologies development solutions in the automotive industry by the TOPSIS multi-criteria decision making method. International Journal of Hydrogen Energy, 36(20), 13272–13280.CrossRefGoogle Scholar
  198. 198.
    Yan, G., Ling, Z., & Dequn, Z. (2011). Performance evaluation of coal enterprises energy conservation and reduction of pollutant emissions base on GRD-TOPSIS. Energy Procedia, 5, 535–539.CrossRefGoogle Scholar
  199. 199.
    Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510–521.CrossRefGoogle Scholar
  200. 200.
    Wang, E. (2015). Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach. Applied Energy, 146, 92–103.CrossRefGoogle Scholar
  201. 201.
    Bas, E. (2013). The integrated framework for analysis of electricity supply chain using an integrated SWOT-fuzzy TOPSIS methodology combined with AHP: The case of Turkey. International Journal of Electrical Power & Energy Systems, 44(1), 897–907.CrossRefGoogle Scholar
  202. 202.
    Haehnlein, S., Bayer, P., & Blum, P. (2010). International legal status of the use of shallow geothermal energy. Renewable and Sustainable Energy Reviews, 14(9), 2611–2625.CrossRefGoogle Scholar
  203. 203.
    Daim, T. U., Kayakutlu, G., & Cowan, K. (2010). Developing Oregon’s renewable energy portfolio using fuzzy goal programming model. Computers & Industrial Engineering, 59(4), 786–793.CrossRefGoogle Scholar
  204. 204.
    Energyhomes.Org. (2008). Leadership in energy and environmental design. Centennial.Google Scholar
  205. 205.
    Kraan, C. M. (2013). Drivers and barriers to deep geothermal energy in the Netherlands: What are the implications of government policy?, M.Sc, University of Edinburgh, School of Geosciences.Google Scholar
  206. 206.
    Geothermal Basics – Power Plant Costs, (2016). [Online]. Available: Accessed: 29 May 2016.
  207. 207.
    Rybach, L. (2003). Geothermal energy: sustainability and the environment. Geothermics, 32(4), 463–470.CrossRefGoogle Scholar
  208. 208.
    Northwest Energy Efficiency Task Force, (2016). [Online]. Available: Accessed 29 May 2016.
  209. 209.
    State of Oregon, Employment Department, Population growth rate increases in Oregon for third straight year, W. Burchard, August 2015.Google Scholar
  210. 210.
    Shah, V. P., Debella, D. C., & Ries, R. J. (2008). Life cycle assessment of residential heating and cooling systems in four regions in the United States. Energy and Buildings, 40(4), 503–513.CrossRefGoogle Scholar
  211. 211.
    Newsham, G. R., & Bowker, B. G. (2010). The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: a review. Energy Policy, 38(7), 3289–3296.CrossRefGoogle Scholar
  212. 212.
    Saidur, R. (2010). A review on electrical motors energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(3), 877–898.CrossRefGoogle Scholar
  213. 213.
    Regnier, E. (2007). Oil and energy price volatility. Energy Economics, 29(3), 405–427.CrossRefGoogle Scholar
  214. 214.
    Kaygusuz, K., & Kaygusuz, A. (2004). Geothermal energy in Turkey: the sustainable future. Renewable and Sustainable Energy Reviews, 8(6), 545–563.CrossRefGoogle Scholar
  215. 215.
    Geothermal Energy Association. (2015). Annual U.S. & Global Geothermal Power Production Report, Geo-Energy.Org.Google Scholar
  216. 216.
    Daim, T., Yates, D., Peng, Y., & Jimenez, B. (August 2009). Technology assessment for clean energy technologies: the case of the Pacific Northwest. Technology in Society, 31(3), 232–243.CrossRefGoogle Scholar
  217. 217.
    Gerdsri, P., & Kocaoglu, D. (2009). A systematic approach to developing national technology policy and strategy for emerging technologies: A case study of nanotechnology for Thailand's agriculture industry. InIn Management of Engineering & Technology, 2009. PICMET 2009. Portland International Conference (pp. 447–461).CrossRefGoogle Scholar
  218. 218.
    Hämäläinen, R. P., & Karjalainen, R. (1992). Decision support for risk analysis in energy policy. European Journal of Operational Research, 56(2), 172–183.CrossRefGoogle Scholar
  219. 219.
    Gerdsri, P., & Kocaoglu, D. F. (2008). HDM for developing national emerging technology strategy and policy supporting sustainable economy: a case study of nanotechnology for Thailand’s agriculture. InManagement of Engineering & Technology, 2008. PICMET 2008. Portland International Conference (pp. 344–350).CrossRefGoogle Scholar
  220. 220.
    Geothermal Technologies Program, D. K. Garman, U.S. Department of Energy, Energy Efficiency and Renewable Energy.Google Scholar
  221. 221.
    Fridleifsson, I. B. (2001). Geothermal energy for the benefit of the people. Renewable and Sustainable Energy Reviews, 5(3), 299–312.CrossRefGoogle Scholar
  222. 222.
    Tourkolias, C., & Mirasgedis, S. (2011). Quantification and monetization of employment benefits associated with renewable energy technologies in Greece. Renewable and Sustainable Energy Reviews, 15(6), 2876–2886.CrossRefGoogle Scholar
  223. 223.
    Agioutantis, Z., & Bekas, A. (2000). The potential of district heating using geothermal energy. A case study, Greece. Geothermics, 29(1), 51–64.CrossRefGoogle Scholar
  224. 224.
    Chatzimouratidis, A. I., & Pilavachi, P. A. (2008). Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy, 36(3), 1074–1089.CrossRefGoogle Scholar
  225. 225.
    Lehr, U., Nitsch, J., Kratzat, M., Lutz, C., & Edler, D. (2008). Renewable energy and employment in Germany. Energy Policy, 36(1), 108–117.CrossRefGoogle Scholar
  226. 226.
    Geothermal Rules Encourage AlternativeEnergy Development on Federal Lands, (2016). [Online]. Available: Accessed 01 Jun 2016.
  227. 227.
    Geothermal Energy, US Department of interior, Bureau of land management.Google Scholar
  228. 228.
    Geothermal Energy Why it matters to Oregon, Oregon Department of Energy, Salem, December 2014.Google Scholar
  229. 229.
    Evans, A., Strezov, V., & Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082–1088.CrossRefGoogle Scholar
  230. 230.
    Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11), 2042–2056.CrossRefGoogle Scholar
  231. 231.
    Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524.CrossRefGoogle Scholar
  232. 232.
    Kaygusuz, K. (2009). Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey. Renewable and Sustainable Energy Reviews, 13(1), 253–270.CrossRefGoogle Scholar
  233. 233.
    Bayer, P., Saner, D., Bolay, S., Rybach, L., & Blum, P. (2012). Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renewable and Sustainable Energy Reviews, 16(2), 1256–1267.CrossRefGoogle Scholar
  234. 234.
    Jacobson, M. Z., & Delucchi, M. A. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39(3), 1154–1169.CrossRefGoogle Scholar
  235. 235.
    Abbasi, S. A., & Abbasi, N. (2000). The likely adverse environmental impacts of renewable energy sources. Applied Energy, 65(1), 121–144.CrossRefGoogle Scholar
  236. 236.
    De Vries, B. J., Van Vuuren, D. P., & Hoogwijk, M. M. (2007). Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35(4), 2590–2610.CrossRefGoogle Scholar
  237. 237.
    Mahmoudi, H., Spahis, N., Goosen, M. F., Ghaffour, N., Drouiche, N., & Ouagued, A. (2010). Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria. Renewable and Sustainable Energy Reviews, 14(1), 512–517.CrossRefGoogle Scholar
  238. 238.
    Fehler, M. C. (1989). Stress control of seismicity patterns observed during hydraulic fracturing experiments at the Fenton Hill Hot Dry Rock geothermal energy site, New Mexico. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(3), 211–219.CrossRefGoogle Scholar
  239. 239.
    Pine, R. J., & Batchelor, A. S. (1984). Downward migration of shearing in jointed rock during hydraulic injections. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21(5), 249–263.CrossRefGoogle Scholar
  240. 240.
    Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., & Moia, F. (2012). A survey of the induced seismic responses to fluid injection in geothermal and CO 2 reservoirs in Europe. Geothermics, 41, 30–54.CrossRefGoogle Scholar
  241. 241.
    Majer, E. L., & Peterson, J. E. (2007). The impact of injection on seismicity at The Geysers, California Geothermal Field. International Journal of Rock Mechanics and Mining Sciences, 44(8), 1079–1090.CrossRefGoogle Scholar
  242. 242.
    Charléty, J., Cuenot, N., Dorbath, L., Dorbath, C., Haessler, H., & Frogneux, M. (2007). Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts. International Journal of Rock Mechanics and Mining Sciences, 44(8), 1091–1105.CrossRefGoogle Scholar
  243. 243.
    Chang, J., Leung, D. Y., Wu, C. Z., & Yuan, Z. H. (2003). A review on the energy production, consumption, and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews, 7(5), 453–468.CrossRefGoogle Scholar
  244. 244.
    Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413.CrossRefGoogle Scholar
  245. 245.
    Akella, A. K., Saini, R. P., & Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390–396.CrossRefGoogle Scholar
  246. 246.
    Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265–2300.CrossRefGoogle Scholar
  247. 247.
    Shuit, S. H., Tan, K. T., Lee, K. T., & Kamaruddin, A. H. (2009). Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy, 34(9), 1225–1235.CrossRefGoogle Scholar
  248. 248.
    Bilgen, S., Keleş, S., Kaygusuz, A., Sarı, A., & Kaygusuz, K. (2008). Global warming and renewable energy sources for sustainable development: a case study in Turkey. Renewable and Sustainable Energy Reviews, 12(2), 372–396.CrossRefGoogle Scholar
  249. 249.
    Fridleifsson, I. B. (2003). Status of geothermal energy amongst the world's energy sources. Geothermics, 32(4), 379–388.CrossRefGoogle Scholar
  250. 250.
    Evrendilek, F., & Ertekin, C. (2003). Assessing the potential of renewable energy sources in Turkey. Renewable Energy, 28(15), 2303–2315.CrossRefGoogle Scholar
  251. 251.
    Kumar, A., Kumar, K., Kaushik, N., Sharma, S., & Mishra, S. (2010). Renewable energy in India: current status and future potentials. Renewable and Sustainable Energy Reviews, 14(8), 2434–2442.CrossRefGoogle Scholar
  252. 252.
    Østergaard, P. A., & Lund, H. (2011). A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Applied Energy, 88(2), 479–487.CrossRefGoogle Scholar
  253. 253.
    Rezaie, B., & Rosen, M. A. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy, 93, 2–10.CrossRefGoogle Scholar
  254. 254.
    Chamorro, C. R., Mondéjar, M. E., Ramos, R., Segovia, J. J., Martín, M. C., & Villamañán, M. A. (2012). World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies. Energy, 42(1), 10–18.CrossRefGoogle Scholar
  255. 255.
    Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159–180.CrossRefGoogle Scholar
  256. 256.
    Ball, M., & Wietschel, M. (2009). The future of hydrogen–opportunities and challenges. International Journal of Hydrogen Energy, 34(2), 615–627.CrossRefGoogle Scholar
  257. 257.
    Crompton, P., & Wu, Y. (2005). Energy consumption in China: past trends and future directions. Energy Economics, 27(1), 195–208.CrossRefGoogle Scholar
  258. 258.
    Dorian, J. P., Franssen, H. T., & Simbeck, D. R. (2006). Global challenges in energy. Energy Policy, 34(15), 1984–1991.CrossRefGoogle Scholar
  259. 259.
    Franco, A., & Diaz, A. R. (2009). The future challenges for “clean coal technologies”: joining efficiency increase and pollutant emission control. Energy, 34(3), 348–354.CrossRefGoogle Scholar
  260. 260.
    Oh, T. H., Pang, S. Y., & Chua, S. C. (2010). Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth. Renewable and Sustainable Energy Reviews, 14(4), 1241–1252.CrossRefGoogle Scholar
  261. 261.
    Stiegel, G. J., & Ramezan, M. (2006). Hydrogen from coal gasification: an economical pathway to a sustainable energy future. International Journal of Coal Geology, 65(3), 173–190.CrossRefGoogle Scholar
  262. 262.
    Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157–175.CrossRefGoogle Scholar
  263. 263.
    Momirlan, M., & Veziroglu, T. N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy, 30(7), 795–802.CrossRefGoogle Scholar
  264. 264.
    Lund, J. W., Freeston, D. H., & Boyd, T. L. (2005). Direct application of geothermal energy: 2005 worldwide review. Geothermics, 34(6), 691–727.CrossRefGoogle Scholar
  265. 265.
    Chiodini, G., & Cioni, R. (1989). Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Applied Geochemistry, 4(5), 465–472.CrossRefGoogle Scholar
  266. 266.
    Hepbasli, A., & Akdemir, O. (2004). Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management, 45(5), 737–753.CrossRefGoogle Scholar
  267. 267.
    Casas, W., & Schmitz, G. (2005). Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building. Energy and Buildings, 37(5), 493–501.CrossRefGoogle Scholar
  268. 268.
    Sanner, B., Karytsas, C., Mendrinos, D., & Rybach, L. (2003). Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 32(4), 579–588.CrossRefGoogle Scholar
  269. 269.
    Cai, W. G., Wu, Y., Zhong, Y., & Ren, H. (2009). China building energy consumption: situation, challenges and corresponding measures. Energy Policy, 37(6), 2054–2059.CrossRefGoogle Scholar
  270. 270.
    Hähnlein, S., Bayer, P., Ferguson, G., & Blum, P. (2013). Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy, 59, 914–925.CrossRefGoogle Scholar
  271. 271.
    Allen, A., Milenic, D., & Sikora, P. (2003). Shallow gravel aquifers and the urban ‘heat island’effect: a source of low enthalpy geothermal energy. Geothermics, 32(4), 569–578.CrossRefGoogle Scholar
  272. 272.
    Stambouli, A. B., Khiat, Z., Flazi, S., & Kitamura, Y. (2012). A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renewable and Sustainable Energy Reviews, 16(7), 4445–4460.CrossRefGoogle Scholar
  273. 273.
    Akorede, M. F., Hizam, H., & Pouresmaeil, E. (2010). Distributed energy resources and benefits to the environment. Renewable and Sustainable Energy Reviews, 14(2), 724–734.CrossRefGoogle Scholar
  274. 274.
    Bloomquist, R. G. (2003). Geothermal space heating. Geothermics, 32(4), 513–526.CrossRefGoogle Scholar
  275. 275.
    Shen, L. Y., & Tam, V. W. (2002). Implementation of environmental management in the Hong Kong construction industry. International Journal of Project Management, 20(7), 535–543.CrossRefGoogle Scholar
  276. 276.
    Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296.CrossRefGoogle Scholar
  277. 277.
    Payraudeau, S., & van der Werf, H. M. (2005). Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems & Environment, 107(1), 1–19.CrossRefGoogle Scholar
  278. 278.
    Krajnc, D., & Glavič, P. (2005). A model for integrated assessment of sustainable development. Resources, Conservation and Recycling, 43(2), 189–208.CrossRefGoogle Scholar
  279. 279.
    Menegaki, A. (2008). Valuation for renewable energy: a comparative review. Renewable and Sustainable Energy Reviews, 12(9), 2422–2437.CrossRefGoogle Scholar
  280. 280.
    Tam, C. M., Tam, V. W., & Tsui, W. S. (2004). Green construction assessment for environmental management in the construction industry of Hong Kong. International Journal of Project Management, 22(7), 563–571.CrossRefGoogle Scholar
  281. 281.
    Berardi, U. (2013). Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes. Energy Policy, 60, 520–530.CrossRefGoogle Scholar
  282. 282.
    Gilchrist, A., & Allouche, E. N. (2005). Quantification of social costs associated with construction projects: state-of-the-art review. Tunnelling and Underground Space Technology, 20(1), 89–104.CrossRefGoogle Scholar
  283. 283.
    Christie, N., Smyth, K., Barnes, R., & Elliott, M. (2014). Co-location of activities and designations: A means of solving or creating problems in marine spatial planning? Marine Policy, 43, 254–261.CrossRefGoogle Scholar
  284. 284., Geothermal Basics – Basics. (2015). [Online]. Available: Accessed 25 June 2015.
  285. 285.
    Huang, B., Ouyang, Z., Zheng, H., Zhang, H., & Wang, X. (2008). Construction of an eco-island: a case study of Chongming Island, China. Ocean and Coastal Management, 51(8), 575–588.CrossRefGoogle Scholar
  286. 286., Types of Geothermal Power Plants. (2015). [Online]. Available: Accessed 25 June 2015.
  287. 287.
    Yari, M. (2010). Exergetic analysis of various types of geothermal power plants. Renewable Energy, 35(1), 112–121.CrossRefGoogle Scholar
  288. 288.
    Shanben, Q., Fangxun, L. I., & Nianru, L. I. (1989). Turbogenerator units operating on duo-flash cycle in the Yangbajain geothermal power plant, Tibet, China. InEnergy Conversion Engineering Conference, 1989. IECEC-89., Proceedings of the 24th Intersociety (pp. 2151–2154).Google Scholar
  289. 289.
    Gallup, D. L. (1996). Combination flash-bottoming cycle geothermal power generation: a case history. InEnergy conversion engineering conference, 1996. IECEC 96., proceedings of the 31st intersociety (Vol. 3, pp. 1622–1627).CrossRefGoogle Scholar
  290. 290.
    Jalilinasrabady, S., Itoi, R., Valdimarsson, P., Saevarsdottir, G., & Fujii, H. (2012). Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics, 43, 75–82.CrossRefGoogle Scholar
  291. 291.
    Luo, C., Huang, L., Gong, Y., & Ma, W. (2012). Thermodynamic comparison of different types of geothermal power plant systems and case studies in China. Renewable Energy, 48, 155–160.CrossRefGoogle Scholar
  292. 292., Introduction to Geothermal Energy – Power Plant Geysers 2. (2015). [Online]. Available: Accessed 25 June 2015.
  293. 293., Steamboat Springs Geothermal Field | ONE. (2015). [Online]. Available: Accessed 25 June 2015.
  294. 294.
    Bliem, C. J., & Mines, G. L. (1991). Advanced binary geothermal power plants: Limits of performance. Idaho Falls: EG and G Idaho.CrossRefGoogle Scholar
  295. 295.
    Lund, J. W., & Klein, R. (1995). Prawn Park-Taupo, New Zealand. Geo-Heat Center Quarterly Bulletin, 16(4), 27–29.Google Scholar
  296. 296.
    Truesdell, A. H., & White, D. E. (1973). Production of superheated steam from vapor-dominated geothermal reservoirs. Geothermics, 2(3), 154–173.CrossRefGoogle Scholar
  297. 297.
    Kanoglu, M. (2002). Exergy analysis of a dual-level binary geothermal power plant. Geothermics, 31(6), 709–724.CrossRefGoogle Scholar
  298. 298.
    Kanoğlu, M., & Çengel, Y. A. (1999). Economic evaluation of geothermal power generation, heating, and cooling. Energy, 24(6), 501–509.CrossRefGoogle Scholar
  299. 299.
    Toni, B. (2011). Geothermal demonstration project.Google Scholar
  300. 300., Geo-Heat Center. (2015). [Online]. Available: Accessed 25 June 2015.
  301. 301.
    Renewable Energy in Oregon, American Council On Renewable Energy (ACORE), September 2014.Google Scholar
  302. 302.
    Geothermal Exchange Organization, Geothermal Exchange Organization – Geothermal Heat Pumps. (2015). [Online]. Available: Accessed 25 June 2015.
  303. 303., Direct Use of Geothermal Energy | Department of Energy. (2015). [Online]. Available: Accessed 25 June 2015.
  304. 304.
    Huttrer, G. W. (2001). The status of world geothermal power generation 1995–2000. Geothermics, 30(1), 1–27.CrossRefGoogle Scholar
  305. 305.
    Hurter, S., & Schellschmidt, R. (2003). Atlas of geothermal resources in Europe. Geothermics, 32(4), 779–787.CrossRefGoogle Scholar
  306. 306.
    Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., & Calore, C. (1995). Geothermal ranking of Italian territory. Geothermics, 24(1), 115–129.CrossRefGoogle Scholar
  307. 307.
    Lund, J. W. (2003). The USA geothermal country update. Geothermics, 32(4), 409–418.CrossRefGoogle Scholar
  308. 308., Geothermal Heat Pumps. (2015). [Online]. Available: Accessed 25 June 2015.
  309. 309., Geothermal Energy Ground-Source Heat Pumps. (2015). [Online]. Available: Accessed 25 June 2015.
  310. 310.
    Current, J., Ratick, S., & ReVelle, C. (1998). Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach. European Journal of Operational Research, 110(3), 597–609.CrossRefGoogle Scholar
  311. 311.
    Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information Management, 42(1), 15–29.CrossRefGoogle Scholar
  312. 312.
    Sheikh, N., Daim, T., & Kocaoglu, D. F. (2011). Use of multiple perspectives and decision modeling for PV technology assessment. InTechnology Management in the Energy Smart World (PICMET 2011) (pp. 1–21).Google Scholar
  313. 313.
    Nutt, D. J., King, L. A., & Phillips, L. D. (2010). Drug harms in the UK: a multicriteria decision analysis. The Lancet, 376(9752), 1558–1565.CrossRefGoogle Scholar
  314. 314.
    Kim, S. Y., Karlawish, J. H., & Caine, E. D. (2002). Current state of research on decision-making competence of cognitively impaired elderly persons. The American Journal of Geriatric Psychiatry, 10(2), 151–165.CrossRefGoogle Scholar
  315. 315.
    Liberatore, M. J., & Nydick, R. L. (2008). The analytic hierarchy process in medical and health care decision making: A literature review. European Journal of Operational Research, 189(1), 194–207.CrossRefGoogle Scholar
  316. 316.
    Shanteau, J. (1988). Psychological characteristics and strategies of expert decision makers. Acta Psychologica, 68(1–3), 203–215.CrossRefGoogle Scholar
  317. 317.
    Daim, T. U. (1998). Technology evaluation and acquisition strategies and their implications in the US electronics manufacturing industry, Portland State University.Google Scholar
  318. 318.
    Fink, A. J. M. R. H. (1984). American Journal of Public Health, 74, 979–983.CrossRefGoogle Scholar
  319. 319.
    Weiss, D. J., & Shanteau, J. (2003). Empirical assessment of expertise. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(1), 104–116.CrossRefGoogle Scholar
  320. 320.
    Ra, J. W. (1988). Analysis of expert judgments in hierarchical decision process. University of Pittsburgh.Google Scholar
  321. 321.
    G. Council, What is Geothermal? – Geothermal Resources Council, (2017). [Online]. Available: Accessed 19 Jan 2017.
  322. 322.
    Geothermal heat pump, (2017). [Online]. Available: Accessed: 19 Jan 2017.
  323. 323.
    Geothermal Today. (2003). 1st ed. U.S Department of Energy.Google Scholar
  324. 324.
    (2017). [Online]. Available: Accessed 19 Jan 2017.
  325. 325.
    Paired Comparison Analysis: Working Out Relative Importances, (2017). [Online]. Available: Accessed 19 Jan 2017.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Shehab Alshareef
    • 1
  • Tugrul U. Daim
    • 1
  • Ibrahim Iskin
    • 2
  1. 1.Portland State UniversityPortlandUSA
  2. 2.DemandbaseSeattleUSA

Personalised recommendations