Skip to main content

Fungal Bioremediation as a Tool for Polluted Agricultural Soils

  • Chapter
  • First Online:
  • 943 Accesses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Soils can be contaminated with heavy metal by anthropogenic activities, and they do not go through a process of chemical or biological (microbial) degradation, so their total concentration in soils persists for a long time after their introduction. Conventional method to remove such contaminants is costly and inefficient; however, the bioremediation is cost-effective, efficient, and environmentally friendly alternative. The properties of some genera of fungi, such as Trichoderma, Beauveria, and Paecilomyces, to absorb and accumulate heavy metals give a great potential for cheap alternative method to remove heavy metal from soil. For that reason, the aim of this chapter is to discuss about the heavy metal removal from contaminated agricultural soil using bioremediation by fungi Trichoderma sp., Beauveria bassiana (Bals.) Vuill., and Paecilomyces lilacinus (Thom) Samson.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas SAU, Khan MJ, Tariqjan M, Khan NU, Arif M, Parveen S (2011) The effect of using waste water on tomato. Pak J Bot 43:1

    Google Scholar 

  • Abou-Shanab RAI, Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  PubMed  Google Scholar 

  • Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  PubMed  Google Scholar 

  • Agarwal SK (1998) Environmental biotechnology. APH Publishing Corporation, New Delhi, pp 267–289

    Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) Fungi as bioremediators. In: The bioremediation potential of different Ecophysiological groups of fungi. Springer, Berlin, pp 29–49

    Google Scholar 

  • Aravinna P, Priyantha N, Pitawala A, Yatigammana SK (2017) Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. J Environ Sci Health B 52:37–47

    Article  CAS  PubMed  Google Scholar 

  • Archana A, Jaitlty AK (2015) Mycoremediation: utilization of fungi for reclamation of heavy metals as their optimum remediation conditions. Biolife 3(1):77–106

    Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  Google Scholar 

  • Baldrian P, Gabriel J (2002) Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94:428–436

    Article  CAS  PubMed  Google Scholar 

  • Banik S, Das KC, Islam MS, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Bioeng 2(1):1035

    Google Scholar 

  • Bayoumi HEAF, Patkó I (2010) Relationship between environmental impacts and modern agriculture. Environmental Protection Engineering Institute, Óbuda University, e-Bulletin 1,1

    Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Bourne M, Nicotra AB, Colloff MJ, Cunningham SA (2008) Effect of soil biota on growth and allocation by Eucalyptus microcarpa. Plant Soil 305:145

    Article  CAS  Google Scholar 

  • Bozkurt H, Celekli A, Yavuzatmaca M (2010) An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. J Hazard Mater 173:123–129

    Article  PubMed  Google Scholar 

  • Carneiro RMDG (1992) Princípios e tendências de controle biológico de nematóides com fungos nematófagos. Pesq Agrop Brasileira 27:113–121

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharp-ley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Celekli A, Bozkurt H (2011) Biosorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination 275:141–147

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Domsch KH, Gams W (1980) Compendium of soil fungi. Academic Press, New York, pp 529–532

    Google Scholar 

  • Doelman P, Jansen E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Bioi Fertil Soils 17:177–184

    Google Scholar 

  • Dugal S, Gangawane M (2012) Metal tolerance and potential of Penicillium species for use in mycoremediation. J Chem Pharm Res 4:2362–2366

    CAS  Google Scholar 

  • Edmondson WT (1995) Eutrophication. Encyclopedia of environmental biology, vol 1. Academic Press, New York, pp 697–703

    Google Scholar 

  • EEA (European Environment Agency) (2003) Europe’s environment: the third assessment. State of Environment report No 1/2003. Copenhagen

    Google Scholar 

  • EPA, Environmental protection Agency (2016) Climate change indicators in the United States: global greenhouse gas emissions www.epa.gov/climate-indicators – Updated August 2016

  • FAO (2014) Soil degradation. Accessed on (19/11/2014) Available: www.fao.org/soils-portal/soil-degradation-restoration/en

  • FAO (Food and Agriculture Organization of the United Nations) (2009) How to feed the world in 2050. FAO, Rome. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

    Google Scholar 

  • Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Goblenz A, Wolf K, Bauda P (1994) The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14:303–308

    Article  Google Scholar 

  • Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Leathers TD, Wicklow DT (1993) Hydrolytic enzymes secreted by Paecilomyces lilacinus cultured on sclerotia of Aspergillus flavus. Appl Microbiol Biotechnol 39:99–103

    Article  CAS  Google Scholar 

  • Gupta RP, Kalia A, Kapoor S (2007) Bioinoculants: a step towards sustainable agriculture. New India Publishing Agency, New Delhi, p 306

    Google Scholar 

  • Hamilton PA, Shedlock RJ (1992) Are fertilizers and pesticides in the ground water?; U.S. Geological Survey: Reston, VA; Circular 1080

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Hess A, Zarda B, Hahn D, Hanner A, Stax D (1997) In situ analysis of denitrifying toluene and m-xylene degrading bacteria in a diesel fuel contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth RW (2006) Atmospheric deposition and nitrogen pollution in coastal marine ecosystems. In: Visgilio GR, Whitelaw DM (eds) Acid in the environment: lessons learned and future prospects. Springer, NY, pp 97–116

    Google Scholar 

  • ILO (International Labour Organization) (2011) Safety and health in agriculture, isbn: 978-92-2-124971-9. Retrieved Dec 2016

    Google Scholar 

  • Jantschi L, Suciu I, Cosma C, Todica M, Bolboaca SD (2008) Analysis of soil heavy metal pollution and pattern in central Transylvania. Int J Mol Sci 9:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol 2:270

    Article  PubMed  PubMed Central  Google Scholar 

  • Kameo S, Iwahashi H, Kojima Y, Satoh H (2000) Induction of metallothioneins in the heavy metal resistant fungus Beauveria bassiana exposed to copper or cadmium. Analysis 28(5):382–385

    CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Kojima Y, Berger C, Vallee BL, Kägi JHR (1976) Amino-acid sequence of equine renal metallothionein-1B. Proc Nat Acad Sci USA 73:3413–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Bishnoi NR, Garima K (2008) Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Li F, Tan TC (1994) Monitoring BOD in the presence of heavy metal ions using poly (4-vinylpyr-idine) coated microbial sensor. Biosens Bioelectron 9:445–455

    Article  CAS  Google Scholar 

  • Loebenstein G, Thottappilly G (2007) Agricultural research management. Springer, Dordrecht

    Book  Google Scholar 

  • MA (Millennium Ecosystem Assessment) (2005) Ecosystem services and human well-being: wetlands and water synthesis. World Resources Institute, Washington D.C. 68 pp. Web site: http://www.millenniumassessment.org/en/index.aspx)

  • Mann H (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Raton, pp 93–137

    Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  Google Scholar 

  • Maurya NS, Mittal AK, Peter C, Elmar R (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Montanarella L, Vargas R (2012) Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Environ Sustain 4:559–564

    Article  Google Scholar 

  • Muraleedharan TR, Iyengar L, Venkobachar C (1991) Biosorption: an attractive alternative for metal removal and recovery. Curr Sci 61:379–385

    CAS  Google Scholar 

  • Nordberg GF, Nordberg M, Piscator M, Vesterberg O (1972) Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem J 126(3):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (2012) Water quality and agriculture – meeting the policy challenge. OECD studies on water. OECD Publishing, Paris

    Google Scholar 

  • Olesen JE (2006) Climate change as a driver for European agriculture. SCAR – Foresight in the field of agricultural research in Europe. https://ec.europa.eu/research/agriculture/scar/pdf/scar_foresight_climate_change_en.pdf

    Google Scholar 

  • Önder M, Kahraman A (2010) Global climate changes and their effects on field crops. In: 10th international multidisciplinary geoconference SGEM, Conference Proceedings, 20–26 June 2010, Bulgaria. 2010, vol. II, pp. 589–592

    Google Scholar 

  • Önder M, Ceyhan E, Kahraman A (2011) Effects of agricultural practices on environmental. In: International Conference on Biology, Environment and Chemistry (ICBEC), vol. 24 © IACSIT Press, Singapore

    Google Scholar 

  • Pantelica A, Cercasov V, Steinnes E, Bode P, Wolterbeek B (2008) Investigation by INAA, XRF, ICPMSnand PIXE of Air Pollution Levels at Galati (Siderurgical Site), In: Book of abstracts, 4th Nat. Conf. of Applied Physics (NCAP4), Galati, Romania, September 2008 (A. Ene – Ed.) Galati University Press, Galati, Romania

    Google Scholar 

  • Purchase D, Scholes LNL, Revitt DM, Shutes RBE (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)-growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198

    Article  Google Scholar 

  • Rial-Otero R, Cancho-Grande B, Arias-Estévez M, López-Periago E, Simal-Gándara J (2003) Procedure for the measurement of soil inputs of plant-protection agents washed off through vineyard canopy by rainfalls. J Agric Food Chem 51(17):5041–5046

    Article  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombach MC, Aguda RM, Shepard BM, Roberts DW (1986) Infection of rice brown plant hopper, Nilaparvata lugens (Homoptera: Delphacidae), by field application of entomopathogenic hyphomycetes (Deuteromycotina). Environ Entomol 15:1070–1073

    Article  Google Scholar 

  • Sahu A, Manna MC, Mandal A, Subba Rao A, Thakur J (2012) Exploring bioaccumulation efficacy of Trichoderma viride: an alternative bioremediation of cadmium and lead. Natl Acad Sci Lett 35(4):299–302

    Article  CAS  Google Scholar 

  • Samson RA (1974) Paecilomyces and some allied hyphomycetes. In: Studies in mycology, vol 6. Centraal bureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Shilev S, Babrikov T (2005) Heavy metal accumulation in Solanaceae-plants grown at contaminated area. In: Gruev B, Nikolova M Donev A (eds) Proceedings of the Balkan scientific conference of biology in Plovdiv (Bulgaria) from 19th till 21st of May 2005. pp. 452–460

    Google Scholar 

  • Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Srivastavar PK, Vermar PC, Kharwar RN, Singhi N, Tripathi RD (2015) Soil fungi Mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Biorem J 12:7087

    Article  Google Scholar 

  • Tang CY, Criddle QS, CS F, Leckie JO (2007) Effect of flux (transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing waste water. J Environ Sci Technol 41:2008–2014

    Article  CAS  Google Scholar 

  • Tanous C, Chambellon E, Bars DL, Delespaul G, Yvon M (2006) Glutamate dehydrogenase activity can be transmitted naturally to Lactococcus lactis strains to stimulate amino acid conversion to aroma compounds. Appl Environ Microbiol 72:1402–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Tomko J, Backor M, Stofko M (2006) Biosorption of heavy metals by dry fungi biomass. Acta Metall Slovaca 12:447–451

    Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean-up. Clean Techn Environ Policy 15:541–550. https://doi.org/10.1007/s10098-012-0553-7

    Article  CAS  Google Scholar 

  • Vankar PS, Bajpai D (2008) Phyto-remediation of Chrome-VI of tannery effluent by Trichoderma species. Desalination 222:255–262

    Google Scholar 

  • Vinod PN, Chandramouli PN, Koch M (2015) Estimation of nitrate leaching in groundwater in an agriculturally used area in the state Karnataka, India, using existing model and GIS. Aquat Procedia 4:1047–1053

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. (Technical Report DAS/ DSI/68.27). OECD, Paris

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Nat Acad Sci USA 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls M (2006) Agriculture and environment. The Standing Committee on Agricultural Research (SCAR) Foresight Group. 22 strani. http://ec.europa.eu/research/agriculture/scar/pdf/scar_foresight_environment_en.pdf

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  Google Scholar 

  • Wang J, Zhan X, Ding D, Zhou D (2001) Bioadsorption of lead(II) from aqueous solution by fungal biomass of Aspergillus niger. J Biotechnol 87:273–277

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Li XD, Zhang GQ, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44

    Article  CAS  PubMed  Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17:582–590

    Article  Google Scholar 

  • WRI (World Resources Institute) 2015. Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s climate data explorer. Accessed Dec 2015. http://cait.wri.org

  • Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154:75–79

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Xu X, Zhu W, Huang Q, Chen W (2015) A comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int J Mol Sci 16:15670–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Xia L, Huang Q, JD G, Chen W (2012) Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol 33:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem 91(7):1305–1314

    Article  CAS  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Tang J, Yin H, Liu X, Jiang P, Liu H (2010) Isolation, identification and cadmium adsorption of a high cadmium-resistant Paecilomyces lilacinus. Afr J Biotechnol 9(39):6525–6533

    CAS  Google Scholar 

  • Zhao KL, Liu XM, Zhang WW, JM X, Wang F (2011) Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale. J Soil Sed 11:1165–1177

    Article  CAS  Google Scholar 

  • Zhu YG, Meharg AA (2015) Protecting global soil resource for ecosystem services. Ecosyst Health Sustain 1(3):11

    Article  Google Scholar 

  • Zou CS, Mo MH, YQ G, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pérez Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, S.P., Tapia, M.A.M., Duarte, B.N.D., Vega, M.E.G. (2017). Fungal Bioremediation as a Tool for Polluted Agricultural Soils. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68957-9_1

Download citation

Publish with us

Policies and ethics