Skip to main content

Dynamic Community Detection Algorithm Based on Automatic Parameter Adjustment

  • Conference paper
  • First Online:
  • 2017 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10585))

Abstract

Community detection is widely used in social network analysis. It clusters densely connected vertices into communities. As social networks get larger, scalable algorithms are drawing more attention. Among those methods, the algorithm named Attractor is quite outstanding both in terms of accuracy and scalability. However, it is highly dependent on the parameter, which is abstract for users. The improper parameter value can bring about some problems. There can be a huge community (monster) sometimes; other time the communities are generally too small (fragments). The existing fragments also need eliminating. Such phenomenon greatly deteriorates the performance of Attractor. We modify the algorithm and propose mAttractor, which adjusts the parameter automatically. We introduce two constraints to limit monsters and fragments and to narrow the parameter range. An optional parameter is also introduced. The proposed algorithm can choose to satisfy or ignore the optional parameter by judging whether it is reasonable. Our algorithm also eliminates the existing fragments. A delicate pruning is designed for fast determination. Experiments show that our mAttractor outperforms Attractor by 2%–270%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)

    Google Scholar 

  2. Cross, R., Parker, A., Christensen, C.M., Anthony, S.D., Roth, E.A.: The hidden power of social networks. J. Appl. Manag. Entrepreneurship 9 (2004)

    Google Scholar 

  3. De Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek, vol. 27. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  4. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  5. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. U.S.A. 104(1), 36–41 (2007)

    Article  Google Scholar 

  6. Gil-Mendieta, J., Schmidt, S.: The political network in Mexico. Soc. Netw. 18(4), 355–381 (1996)

    Article  Google Scholar 

  7. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)

    Article  Google Scholar 

  9. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  11. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing, vol. 37. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  12. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(1), 016118 (2009)

    Article  Google Scholar 

  13. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78(4), 046110 (2008)

    Article  Google Scholar 

  14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  15. Leung, I.X.Y., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection in large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(6), 066107 (2009)

    Article  Google Scholar 

  16. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  17. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

    Google Scholar 

  18. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  19. Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56(9), 4294–4303 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76(3), 036106 (2007)

    Article  Google Scholar 

  21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  22. Shao, J., Han, Z., Yang, Q., Zhou, T.: Community detection based on distance dynamics. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1075–1084. ACM (2015)

    Google Scholar 

  23. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. Van Dongen, S.M.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2001)

    Google Scholar 

  25. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  26. Zhang, X.-K., Fei, S., Song, C., Tian, X., Ao, Y.-Y.: Label propagation algorithm based on local cycles for community detection. Int. J. Mod. Phys. B 29(05), 1550029 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is partially supported by The National Key Research and Development Program of China (2016YFB0200401), by program for New Century Excellent Talents in University, by National Science Foundation (NSF) China 61402492, 61402486, 61379146, by the laboratory pre-research fund (9140C810106150C81001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lu, K., Wang, X., Wang, X. (2017). Dynamic Community Detection Algorithm Based on Automatic Parameter Adjustment. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68935-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68934-0

  • Online ISBN: 978-3-319-68935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics